
 Curves
and Surfaces

UNIT 1 CURVES AND SURFACES

Structure Page Nos.
1.1 Introduction 5
1.2 Objectives 6
1.3 Polygon Representation Methods 6

1.3.1 Polygon Surfaces 7
1.3.2 Polygon Tables 7
1.3.3 Plane Equation 10
1.3.4 Polygon Meshes 14

1.4 Bezier Curves and Surfaces 15
1.4.1 Bezier Curves 16
1.4.2 Properties of Bezier Curves 20
1.4.3 Bezier Surfaces 25

1.5 Surface of Revolution 27
1.6 Summary 31
1.7 Solution and Answers 31

1.1 INTRODUCTION

In CS-60, Block 2 and 4 we have studied the technique of drawing curves in different
coordinate systems. Also we got the idea that it is the revolution of a curve about
some axis that gives rise to an object enclosing some volume and area. For better
understanding, just think how a potter works to create vessels of different shapes. He
just put a lump of wet soil on the disc which is revolving about its axis at high speed,
then his/her fingers and palm works as a curve, in contact with the wet soil. Thus, it is
the curve which revolves the some axis to produce vessels of the shape s/he desires. In
this unit let us study some of the practical implementations of the concepts studied in
CS-60 to computer graphics. This will help a lot because in nature God has created
everything with a level of fineness, that if human beings try to achieve that level in
their created art (whether computer generated or not) such that it is quite close to
reality, then one has to excessively make use of curves and surfaces in a balanced
format, and the balance is provided by mathematics. So with the edge of mathematics
computer graphics we can achieve realism. In this unit, we will study the polygon
representation methods – these methods are quite important because it’s the polygon
that constitutes every closed object like tree, clouds, ball, car, etc., to be represented
through graphics. Further, each polygon has its own mathematical equation which
works as the generating function for that polygon. Under this topic we will discuss
polygon tables, polygon meshes and equation of plane. A study of these topics will
provide you a computer oriented approach to understand the implementation of
mathematical concepts. We are going to discuss one more important topic in this unit,
which is Bezier Curves and their properties. It’s the Bezier curves which have
revolutionised the field of computer graphics and opened a new arena, i.e., automobile
sector, for analysis and designing of automobiles. Inspired with this achievement,
scientists have worked hard and now there is no area which is complete without
computer graphics and animation. In this unit, we will deal with fitting curves to the
digitized data. Two techniques are available for obtaining such curves cubic spline
and parabolicaly blended curves. These are based on curve fitting techniques. That is,
they are not an approximate method but fit the curve point exactly. We will also
discuss curve fairing techniques like Bezier and B spline curves, used to approximate
the curve when you are not having a proper knowledge of the shape of the curve. Last
but not the least, we will discuss the concept of surface of revolution. It is an
important topic because the products which are designed are in fact the surfaces
enclosed by the revolution of the curve about some axis. So let us begin our journey.

5

Modeling
and Rendering

1.2 OBJECTIVES

After going through the unit, you should be able to:
• implement the methods used to represent a polygon;
• deduce equation of plane and explain the need of planes in graphics;
• discuss various curves and surface representation schemes;
• discuss the piecewise cubic polynomial equation and their need in object

representation;
• describe Bezier curve/surface and their properties, and
• discuss the concept of surface of revolution.

1.3 POLYGON REPRESENTATION METHODS

Any scene to be created through computer graphics may contain a variety of
objects, some of them natural and some manmade. Thus, to achieve realism in our
scene we are not having any specific single method which handles the realistic
representational complexities of all components (whether natural or manmade) in a
scene.

So let us have an idea of the basic representational schemes available:
• Polygon and quadric surfaces provide precise description for simple Euclidean

objects like polyhedrons, ellipsoids.
• Spline surfaces and construction techniques are useful for designing aircraft

wings, gears, and other engineering structures with curved surfaces
• Procedural methods such as fractals constructions and particle systems give us

accurate representations for the natural objects like clouds, trees etc.
• Physically based modeling methods using systems for interacting forces can be

used to describe the non-rigid behaviors of piece of jelly, or a piece of cloth.
• Octrees encoding are used to represent internal features of the objects, such as

those obtained from medical CT images, volume renderings and other
visualization techniques.

The representational schemes of solid objects are divided into two broad categories:

• Boundary representations: Here the 3D object is represented as a set of

surfaces that separate the object interior from the environment. Examples are
polygonal facets and spline patches. For better understanding consider Figure 1.

 Figure 1 (a) Figure 1 (b)

• Space partitioning representations: These are used to describe the interior
properties, by partitioning the spatial regions containing an object into a set of
small non-overlapping contiguous solids (usually cubes). Example: Octree
(which is the space partitioning description of 3D object). For a better
understanding consider Figure 2.

.
Out of the various representational techniques mentioned above, the most
commonly used boundary representation mechanism for representing 3D objects is,

6

 Curves
and Surfaces

using a set of polygon surfaces to enclose the object interior. Let us discuss this
mechanism in our next section.

1.3.1 Polygon Surfaces

From Figure 1 and Figure 2 it is quite clear that it is possible to store object’s
description as a set of surface polygons and the same is actually done by many
graphic systems, actually this way of object description fastens the rendering and
display of object surfaces. The approach is beneficial because all the surfaces can
now be described with linear equations and hence polygonal description of the
surfaces is referred as “standard graphic objects”. Very many times it is the
polygonal representation which is available to describe the object but there are other
schemes like spline surfaces which are converted to polygonal representation for
processing.

 Figure 2

Consider Figure 3 where the cylindrical surface is represented as a mesh of
polygons. The representation is known as wire frame representation which can
quickly describe the surface structure. On the basis of the structure a realistic
rendering can be performed by interpolating the shading patterns across the polygon
surfaces. Thus polygon mesh representation of the curved surface is actually
dividing a curved surface into polygon facets. This improves and simplifies the
process of rendering (transforming a 3D scene to 2D scene with least loss of
information like height, depth etc). Now the objects are composed of standard
graphic objects (polygon surfaces). Each graphic object needs some method for its
description which could be a polygon table or equation etc. So, let us study the
procedures to represent a polygon surface.

1.3.2 Polygon Tables

Every polygon is analogous to a graph G(V,E). We have studied graphs and their
theory in detail in MCS-033. Keeping in mind the analogy we can say that a polygon
surface can be specified with as a set of vertex coordinates and associated attribute
parameters (the attributes may be colour, contrast, shading, etc). Most systems use
tables to store the information entered for each polygon, and it’s the data in these
tables which is then used for subsequent processing, display and manipulation of the
objects in the scene. As the data required to be stored for an object in the scene
involves both the geometric information and attributes associated with the object, so
polygon data tables can be organised into two groups:

• Attribute tables: This table holds object information like transparency, surface

reflexivity, texture characteristics, etc., of an object in the scene.

• Geometric tables: This table stores the information of vertex coordinates and

parameters like slope for each edge, etc. To identify the spatial orientation of
polygon surface.

7

In order to store geometric information of a polygon properly, this table is further
bifurcated into three more tables:

Modeling
and Rendering

a) Vertex table: Holds coordinate values of vertices in the object.

b) Edge table: Holds pointers back in to the vertex table for identification of the

vertices related to each polygon edge.

c) Polygon table or polygon surface table: Holds pointers back into the edge table

for identification of the edges related to the polygon surface under construction.

This tabular representation of a polygon surface is shown in Figure 4. Such
representations helps one to quickly refer to the data related to a polygon surface.
Also, when the data is put for processing then the processing can be quite efficient,
leading to efficient display of the object under consideration.

Figure 3

Some basic tests that should be performed before producing a polygon surface by any
graphic package:

1) every vertex is listed as an endpoint for at least two edges,
2) every edge is part of at least one polygon,
3) every polygon is closed,
4) each polygon has at least one shared edge,
5) if the edge table contains pointer to polygons, every edge referenced by a polygon

pointer to polygon, every edge referenced by a polygon pointer has a reciprocal
pointer back to polygon.

8

 Curves
and Surfaces

Example 1: Set up a geometric data table for an 3d rectangle.

Solution:

E5

E1 1

E10
E9

E3E1 V8

V4

V2
E7

V1

V3

E8

V7

V5

Vertex Table Edge Ta

V1 X1,y1,z1 E1
V2 X2, y2, z2 E2
V3 X3, y3, z3 E3
V4 X4, y4, z4 E4
V5 X5, y5, z5 E5
V6 X6, y6, z6 E6
V7 X7,y7,z7 E7

V8 X8,y8,z8 E8

 E9

 E10

 E11

Check Your Progress 1

1) What do you think about the utilit

implementation of a polygon surfa

……………………………………

……………………………………

……………………………………

……………………………………

2) What happens if we expand the ed
pointers into the polygon table?

……………………………………

……………………………………

……………………………………

S1
V

E2
Figure 4

ble Po

V1,v5 S1
V5,v6 S2
V6,v2 S3
V6,v7 S4
V7,v8 S5
V1,v2 S6
V2,v3

V7,v3

V3,v4

V4,v1

V1,v2

y of polygon surface
ce with just a vertex

……………………

……………………

……………………

……………………

ge table such that it a

……………………

……………………

……………………
S2
E6
S3
S4
S5
S6
E4
6

lygon Surface Table

 V1,v2,v6,v5
 V2,v6,v7,v3
 V8,v7,v3,v4
 V1,v4,v5,v8
 V8,v5,v6,v7
 V4,v1,v2,v3

table? Can’t we do the
 table and an edge table?

……………………………

……………………………

……………………………

……………………………

lso stores the forward

……………………………

……………………………

……………………………

9

3) Can we extend the vertex table? Give reasons in support of your answer. Modeling

and Rendering

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

4) What do you think expanding the tables will make error detection easy or
difficult?

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

5) Set up a geometric data table for a 3d rectangle using only vertex and polygon
tables.

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

1.3.3 Plane Equation

Plane is a polygonal surface, which bisects its environment into two halves. One is
referred to as forward and the other as backward half of any plane. Now the question
is, which half is forward and which backward, because both are relative terms. So to
remove this dilemma, we use the mathematical representation of planes, i.e., concepts
like equations of planes, normal to a plane, etc., which we have already studied in CS-
60. Now we have understood that both forward and backward halves are relative
terms but w.r.t what? Yes, it’s the plane itself in respect of which we can say any
point in the surrounding environment is in front or back of the plane. So we consider
any point on the plane should satisfy the equation of a plane to be zero,
i.e., Ax + By + Cz + D=0. This equation means any point (x,y,z) will only lie on the
plane if it satisfies the equation to be zero any point (x,y,z) will lie on the front of the
plane if it satisfies the equation to be greater than zero, and any point (x,y,z) will lie
on the back of the plane if it satisfies the equation to be less than zero.

Where (x, y, z) is any point on the plane, and the coefficients A, B, C and D are
constants describing the spatial properties of the plane? This concept of space
partitioning is used frequently in method of BSP (Binary Space Partitioning) trees
generation a polygon representation scheme, quite similar to Octrees.

The importance of plane equations is that they help in producing display of any 3 D
object, But for that we need to process the input data representation for the object
through several procedures, which may include the following steps of processing.

• To transform the modeling and world-coordinate descriptions to viewing

coordinates,
• To devise coordinates,
• To identify visible surfaces,
• To apply surface-rendering procedures.

For some of these processes, we need information about the spatial orientation of the
individual surface components of the object. This information is obtained from the
vertex coordinates values and the equations that describe the polygon planes. Let us

10

 Curves
and Surfaces

study how we can determine the equation of any plane. The equation of a plane, say
ax + by + cz + d = 0, can be determined (generally) in 2 ways:

(1) Say we are given a point P0 (x0, y0, z0) which lies on the plane and say iN be the .

normal to that plane, but we are not given the equation of plane. Then the straight
forward procedure to find the equation of plane is:

• choose any other point P (x, y, z) on plane
• determine the line joining point P and P0 i.e., 0PP = (x – x0, y – y0, z – z0)
• take dot product of the line 0P P and normal to the plane i.e., N

As Normal is perpendicular to any line on the plane so the result of the dot
product should be zero. Therefore,

 0P P . N = (x – x0, y – y0, z – z0). (n1, n2, n3) = 0
 = (x – x0) n1 + (y – y0) n2 + (z – z0) n3 = 0
 = n1x + n2y + n3z = (n1x0 + n2y0 + n3z0)

∴ equation of plane is: n1x + n2y + n3z – (n1x0 + n2y0 + n3z0) = 0.

(2) In the equation Ax + By + Cz + D = 0 for a plane surface ,where (x, y, z) is any
point on the plane, and the coefficients A, B, C and D are constants describing
the spatial properties of the plane. If the values of A,B,C, and D are not given
then we can obtain the values of A, B, C and D by solving a set of three plane
equations using the coordinate values for three non collinear points in the plane,
which are say(x1,y1,z1) , (x2,y2,z2) , (x3,y3,z3)

For this purpose, we can select the following set of simultaneous linear plane
equations for the ratios A/D, B/D, and C/D:

Ax1 + By1 + Cz1 + D = 0
Ax2 + By2 + Cz2 + D = 0
Ax3 + By3 + Cz3 + D = 0

Then
(A/D)xk + (B/D)yk + (C/D)zk = – 1, k = 1, 2, 3

(1)

The solution for this set of equations can be obtained in determinant form, using
Cramer’s rule, as

 A =
1 1

2 2

3 3

1

1

y z
z

y z
1 y B =

1 1

2 2

3 3

1
1
1

x z
x z
x z

(2)

C =
1 1

2 2

3 3

1
1
1

x y
x y
x y

 D = – 1
1 1 1

2 2 2

3 3 3

x y z
x y z
x y z

Expanding the determinants, we can write the calculations for the plane coefficients in
the form

 A = y1(z2 – z3) + y2(z3 – z1) + y3(z1 – z2)
 B = z1(x2 – x3) + z2(x3 – x1) + z3(x1 – x2) (3) C = x1(y2 – y3) + x2(y3 – y1) + x3(y1 – y2)
 D = – x1(y2z3 – y3z2) – x2(y3z1 – y1z3) – x3(y1z2 – y2z1)

11

 Modeling

and Rendering

Figure 5
x

y
N = (A, B, C)

z

Note: Orientation of a plane surface in space can be described with the normal vector
to the plane, as shown in the Figure 5. Further the Cartesian component of vector N,
normal to the surface of the plane described by equation Ax + By + Cz + D = 0, is
given by (A,B,C) where parameters A, B, and C are the plane coefficients calculated
in equations above.

While dealing with polygon surfaces we have understood that polygon tables play a
vital role in storing the information about the polygon. So, the vertex values and other
information are entered into the polygon data structure and hence the values for A, B,
C and D are computed for each polygon and stored with the other polygon data.

Since, we are usually dealing with polygon surfaces that enclose an object interior, we
need to distinguish between the two sides of the surface. The side of or outward side is
the “outside” face. If polygon vertices are specified in a counterclockwise direction
when viewing the outer side of the plane in a right-handed coordinate system, the
direction of the normal vector will be from inside to outside. This is demonstrated for
one plane of a unit cube shown in the Figure 6.
 y

1
1

1

 x

 z

Figure 6

To determine the components of the normal vector for the shaded surface shown in
the Figure 6 of a cube., we select three of the four vertices along the boundary of the
polygon. These points are selected in a counterclockwise direction as we view from
outside the cube toward the origin. Coordinates for these vertices, in the order
selected, can be used in Equations. (3) to obtain the plane coefficients:
A = 1, B = 0, C = 0, D = – 1. Thus, the normal vector for this plane is in the direction
of the positive x- axis.

The elements of the plane normal can also be obtained using a vector cross product
calculations. We again select three vertex positions, V1, V2, and V3, taken in
counterclockwise order when viewing the surface from outside to inside in a right-
handed Cartesian system. Forming two vectors, one from V1 to V2 and the other from
V1 to V3, we calculate N as the vector cross product:

 N = (V2 – V1) X (V3 – V1)

12

 Curves
and Surfaces

This generates values for the plane parameters A, B and C. We can then obtain the
value for parameter D by substituting these values and the coordinates for one of the
polygon vertices in plane equation and solving for D. The plane equation can be
expressed in vector form using the normal N and the position P of any point in the
plane as:

 N . P = – D

Plane equations are used also to identify the position of spatial points relative to the
plane surfaces of an object. For any point (x, y, z) not on a plane with parameters A, B,
C, D, we have:

 Ax + By + Cz + D ≠ 0

We can identify the point as either inside or outside the plane surface according to the
sign (negative or positive) of Ax + By + Cz + D:

if Ax + By + Cz + D < 0, the point (x, y, z) is inside the surface
if Ax + By + Cz + D > 0, the point (x, y, z) is outside the surface

These inequality tests are valid in a right-handed Cartesian system, provided the plane
parameter A, B, C and D were calculated using vertices selected in a counterclockwise
order when viewing the surface in an outside-to-inside direction. For example, in the
above figure of the cube any point outside the shaded plane satisfies the inequality
x – 1 > 0, while any point inside the plane has an x-coordinates value less than 1.

Example 2: Find equation of plane which passes through point P (0, 0, 0) and say the
normal to the plane is given by N (1, 0, – 1)?

Solution: Let us use method 1 discussed above to determine the equation of the plane

Given N (1, 0, – 1) and P (0, 0, 0) ; equation of plane = ?

say P’(x, y, z) be another point on the plane then line PP’ =(x-0, y-0, z-0) = x i + y j +z
k

^ ^ ^

 now determine the dot product of PP’ and normal N

PP'. N = 0 ⇒ n1x, + n2y + n3z – (x0n1 + y0n2 + z0n3) = 0
 1.x + 0. y + (– 1).z – (0 + 0 + 0) = 0
 x – z = 0 → plane equation

⇒ x = z is the required plane shown in Figure 7 below

Y

X

x = z

 Z

Figure 7

13

1.3.4 Polygon Meshes Modeling

and Rendering

A polygonal surface to be drawn may not be simple and may have enormous curls and
curves. Example, a crushed piece of paper, or crushed piece of aluminum foil, etc. In
such cases each section of a polygonal surface can be generated (in computer graphics
or can be simply drawn) with the help of various standard graphic objects like
rectangles, triangles, circles (semicircles), spheres (hemispheres) etc., drawn in a
manner that their pattern combination matches with the polygonal surface under
construction. This cumulative combination of all standard graphic objects is in fact the
mesh or polygonal mesh used to approximate the actual geometry of any complicated
object under construction, with the help of the standard graphic objects.

After studying the section 1.3.2 polygon tables, we came to the conclusion that a
polygonal surface can be represented with the set of vertices, set of edges and set of
surfaces ; which are the general terminologies of nothing but graphs. So we will use
this concept here too because, the polygons we need to represent can be arbitrarily
large. Thus, it is generally convenient and more appropriate to use a polygon mesh
rather than a single mammoth polygon (i.e., single standard graphic object). For
example, you can simplify the process of rendering polygons by breaking all polygons
into triangles. Triangle renderers can also be implemented in hardware, making it
advantageous to break the world down into triangles. Consider below Figure 8:

Figure 8 (a) Figure 8 (b) Figure 8 (c)

Another example where smaller polygons are better is the Inventor lighting model.
Inventor computes lighting at vertices and interpolates the values in the interiors of the
polygons. By breaking larger surfaces into meshes of smaller polygons, the lighting
approximation is improved. From the shown Figure 8 two important observations are:

• Triangle mesh produces n-2 triangles from a polygon of n vertices.
• Quadrilateral mesh produces (n-1) by (m-1) quadrilaterals from an n x m array of

vertices.

It is important to note that specifying polygons with more than three vertices could
result in sets of points, which are not co-planar, the reason behind may be the
numerical errors or error in selecting the coordinate position of the vertices. Handling
non-coplanar vertices is quite difficult, so two ways to handle such situation are:

• Break the polygon into triangles, and deal.
• Approximate A, B, and C in the plane equation. This can be done either by

averaging or by projecting the polygon onto the coordinate planes. A should be
proportional to the projection in the yz-plane, B proportional to xz, and C
proportional to xy. High quality graphics system typically model objects with
polygon meshes and set up a database of geometric and attribute information to
facilitate processing of the polygon facets. Fast hardware implemented polygon
renderers are incorporated into such systems with the capability for displaying
hundreds of thousands to one millon or more shaded polygon per second
including the application of surface texture.

14

 Curves
and Surfaces

Check Your Progress 2

1) Find equation of plane, which passes through point P (1, 1, 1) and say the normal
to the plane is given by N (-1, 0, -1).

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

2) Calculate the equation of plane for the quadrilateral planar polygon described by
the four vertices v1 (1,0,1), v2 (1,1,0), v3(0,1,1) and v4 (1,1,1).

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

1.4 BEZIER CURVES AND SURFACES

We had discussed in the previous section of this unit that we can create complex
geometries with the help of polygon meshes which are further constituted of standard
polygonal objects like triangle, rectangle, square, etc., but apart from this technique to
draw complex geometries, we are having some more advanced techniques to do the
same job like we can use mathematical equations (parametric equations and
polynomial equations), splines, fractals, Bezier curves etc. In this section we will
discuss some of these techniques, but to have the flavor of the detailed analysis of
these techniques you can refer to books given in suggested readings. Before going on
the tour of Bezier curves let us have a brief discussion on other techniques, the
technique of using mathematical equations (parametric equations and polynomial
equations) to realize the complex natural scenes is not always successful because it
requires an enormous number of calculations which consumes an immense amount of
processing time. The better technique to generate complex natural scenes is to use
fractals. Fractals are geometry methods which use procedures and not mathematical
equations to model objects like mountains, waves in sea, etc. There are various kinds
of fractals like self-similar, self-affined, etc. This topic is quite interesting but is out of
the scope of this unit. Now, let us discuss Bezier curves, which is a Spline
approximation method developed by the French engineer Pierre Bezier for use in the
design of Renault automobile bodies. Bezier splines have a number of properties that
make them highly useful and convenient for curve and surface design. They are also
easy to implement. For these reasons, Bezier splines are widely available in various
CAD systems, in general graphics packages (such as GL on Silicon Graphics
systems), and in assorted drawing and painting packages (such as Aldus Super Paint
and Cricket Draw).

Before going into other details of the Bezier curves, we should learn something about
the concept of Spline and their representation. Actually Spline is a flexible strip used
to produce a smooth curve through a designated set of points known as Control points
(it is the style of fitting of the curve between these two points which gives rise to
Interpolation and Approximation Splines).We can mathematically describe such a
curve with a piecewise cubic Polynomial function whose first and second derivatives
are continuous across the various curve sections. In computer graphics, the term spline
curve now refers to any composite curve formed with polynomial sections satisfying
specified continuity conditions (Parametric continuity and Geometric continuity
conditions) at the boundary of the pieces, without fulfilling these conditions no two
curves can be joined smoothly. A spline surface can be described with two sets of

15

orthogonal spline curves. There are several different kinds of spline specifications that
are used in graphics applications. Each individual specification simply refers to a
particular type of polynomial with certain specified boundary conditions. Splines are
used in graphics applications to design curve and surface shapes, to digitize drawings
for computer storage, and to specify animation paths for the objects or the camera in a
scene. Typical CAD applications for splines include the design of automobile bodies,
aircraft and spacecraft surfaces, and ship hulls.

Modeling
and Rendering

We have mentioned above that it is the style of fitting of the curve between two
control points which gives rise to Interpolation and Approximation Splines, i.e., we
can specify a spline curve by giving a set of coordinate positions, called control
points, which indicates the general shape of the curve. These control points are then
fitted with piecewise continuous parametric polynomial functions in one of two ways.
When polynomial sections are fitted so that the curve passes through each control
point, the resulting curve is said to interpolate the set of control points. On the other
hand, when the polynomials are fitted to the general control-point without necessarily
passing through any control point, the resulting curve is said to approximate the set of
control points. Interpolation curves are commonly used to digitize drawings or to
specify animation paths. Approximation curves are primarily used as design tools to
structure object surfaces.

A spline curve is defined, modified, and manipulated with operations on the control
points. By interactively selecting spatial positions for the control points, a designer
can set up an initial curve. After the polynomial fit is displayed for a given set of
control points, the designer can then reposition some or all of the control points to
restructure the shape of the curve. In addition, the curve can be translated, rotated, or
scaled with transformations applied to the control points. CAD packages can also
insert extra control points to aid a designer in adjusting the curve shapes.

1.4.1 Bezier Curves

Bezier curves are used in computer graphics to produce curves which appear
reasonably smooth at all scales. This spline approximation method was developed
by French engineer Pierre Bezier for automobile body design. Bezier spline was
designed in such a manner that they are very useful and convenient for curve and
surface design, and are easy to implement Curves are trajectories of moving points.
We will specify them as functions assigning a location of that moving point (in 2D or
3D) to a parameter t, i.e., parametric curves.

Curves are useful in geometric modeling and they should have a shape which has a
clear and intuitive relation to the path of the sequence of control points. One family of
curves satisfying this requirement are Bezier curve.

The Bezier curve require only two end points and other points that control the
endpoint tangent vector.

Bezier curve is defined by a sequence of N + 1 control points, P0, P1,. . . , Pn. We
defined the Bezier curve using the algorithm (invented by DeCasteljeau), based on
recursive splitting of the intervals joining the consecutive control points.

A purely geometric construction for Bezier splines which does not rely on any
polynomial formulation, and is extremely easy to understand. The DeCasteljeau
method is an algorithm which performs repeated bi-linear interpolation to compute
splines of any order.

16

 Curves
and Surfaces

De Casteljeau algorithm: The control points P0, P1, P2 and P3are joined with line
segments called ‘control polygon’, even though they are not really a polygon but
rather a polygonal curve.

 P1 t : 1 – t P2

Figure 10

t : 1 – t

t : 1 – t t : 1 – t

t : 1 – t t : 1 – t

P0

B (t) =

Each of them is then divided in the same ratio t : 1- t, giving rise to the another
points. Again, each consecutive two are joined with line segments, which are
subdivided and so on, until only one point is left. This is the location of our moving
point at time t. The trajectory of that point for times between 0 and 1 is the Bezier
curve.

A simple method for constructing a smooth curve that followed a control polygon p
with m-1 vertices for small value of m, the Bezier techniques work well. However, as
m grows large (m>20) Bezier curves exhibit some undesirable properties.

end point

direction

direction

 end point

Figure 11 (a) Beizer curve defined by its endpoint vector Figure 11 (b): All sorts of curves

can be specified with different
direction vectors at the end
points

Figure 11 (c): Reflex curves appear when you set the vectors in different directions

In general, a Bezier curve section can be fitted to any number of control points. The
number of control points to be approximated and their relative positions determine the
degree of the Bezier polynomial. As with the interpolation splines, a Bezier curve can
be specified with boundary conditions, with a characterizing matrix, or with blending
function. For general Bezier curves, the blending-function specification is the most
convenient.

Suppose we are given n + 1 control-point positions:),z,y,x(p kkkk = with k varying
from 0 to n. These coordinate points can be blended to produce the following position
vector P(u), which describes the path of an approximating Bezier polynomial function
between and 0p np .

17

 Modeling

and Rendering

 ∑

=

=
n

k
nkk uBpuP

0
,),()(1u0 ≤≤ (1)

The Bezier blending functions are the Bernstein polynomials.)(, uB nk

 (2) knk

nk uuknCuB −−=)1(),()(,

Where the C(n, k) are the binomial coefficients:

)!(!

!nC),(k
knk

nkn
−

==C (3)

equivalently, we can define Bezier blending functions with the recursive calculation

),()()1()(1,11,, uuBuBuuB nknknk −−− +−= (4) 1kn ≥>

with and Vector equation (1) represents a set of three
parametric equations for the individual curve coordinates:

,uBEZ k
k,k = .)1(,0

k
k uB −=

 ∑
=

n

k
nkk uBxux

0
,)()(

 (5) ∑
=

n

k
nkk uByuy

0
,)()(

 ∑
=

n

k
nkk uBzuz

0
,)()(

As a rule, a Bezier curve is a polynomial of degree one less than the number of control
points used: Three points generate a parabola, four points a cubic curve, and so forth.
Figure 12 below demonstrates the appearance of some Bezier curves for various
selections of control points in the xy plane (z = 0). With certain control-point
placements, however, we obtain degenerate Bezier polynomials. For example, a
Bezier curve generated with three collinear control points is a straight-line segment.
And a set of control points that are all at the same coordinate position produces a
Bezier “curve” that is a single point.

Bezier curves are commonly found in painting and drawing packages, as well as CAD
system, since they are easy to implement and they are reasonably powerful in curve
design. Efficient methods for determining coordinate position along a Bezier curve
can be set up using recursive calculations. For example, successive binomial
coefficients can be calculated as shown below through examples of two-dimensional
Bezier curves generated from three, four, and five control points. Dashed lines
connect the control-point positions.

Figure 12

18

 Curves
and Surfaces

Note:

1) Bezier Curve: P (u) = ∑ p
n

0i=
i Bn, i (u) ……………. (1)

Where Bn,i (u) = uci
n i (1 – u)n– i ………….. (2)

 = =),(inC inC !
!()!

n
i n i−

 0 ≤ u ≤ 1

2) Cubic Bezier curve has n = 3:

∴ P (u) = p
3

0i=
∑ i B3, i (u) ………………..(3)

= p0 B3, 0 (u) + p1 B3, 1 (u) + p2 B3, 2 (u) + p3 B3, 3 (u)

Now, lets find B3, 0 (u), B3, 1 (u), B3, 2 (u) , B3, 3 (u) using above equation

Bn, i (u) = uci

n i (1 – u)n – i

a) B3, 0(u) = 3C0 u0 (1 – u)3 – 0

 = 3!
0!(3 0)!−

. 1. (1 – u)3 = (1 – u)3

b) B3, 1(u) = 3C1 u1 (1 – u)3 – 1 = 3!
1!(3 1)!−

 u (1 – u)2

 = 3u (1 – u)2

c) B3, 2 (u) = 3C2 u2 (1 – u)3 – 2 = 3!
2!(3 2)!−

 u2 (1 – u)

 = 3u2 (1 – u)

d) B3, 3 (u) = 3C3 u3 (1 – u)3 – 3 = 3!
3!(3 3)!−

 u3

Using (a), (b) , (c) & (d) in (5) we get

P (u) = p0 (1 – u)3 + 3p1u (1 – u)2 3p2u2 (1 – u) + p3 u3

Example 4: 1 Given p0 (1, 1): p1 (2, 3); p2 (4, 3); p3 (3, 1) as vertices of Bezier curve
determine 3 points on Bezier curve?

Solution: We know Cubic Bezier curve is

 P (u) = ∑ pi B
3

0i=
3, i (u)

⇒ P (u) = p0 (1 – u)3 + 3p1 u (1 – u)2 + 3p2
 u2 (1 – u) + p3u3

P (u) = (1, 1) (1 – u)3 + 3 (2, 3)u (1 – u)2 + 3 (4, 3) u2 (1 – u) + (3, 1)u3.

we choose different values of u from 0 to 1.

u = 0: P (0) = (1, 1) (1 – 0)3 + 0 + 0 + 0 = (1, 1)

u = 0.5: P (0.5) = (1, 1)(1 - 0.5)3+3(2, 3)(0.5) (1 - 0.5)2 + 3 (4, 3)(0.5)2(1 - 0.5)+(3,1)
(0.5)3
 = (1, 1) (0.5)3 + (2, 3) (0.375) + (0.375) (4, 3) + (3, 1) (0.125)
 = (0.125, 0.125) + (0.75, 1.125) + (1.5, 1.125) + (1.125, 0.125)

 P (0.5) = (3.5, 2.5)

u = 1 : P (1)= 0 + 0 + 0 + (3, 1). 13
 = (3, 1)

19

 Modeling

and Rendering

Three points on Bezier curve are , P (0) = (1, 1); P (0.5) = (3.5, 2.5) and P (1) = (3, 1).

1.4.2 Properties of Bezier Curves
A very useful property of a Bezier curve is that it always passes through the first and
last control points. That is, the boundary conditions at the two ends of the curve are

 P 0p)0(=
 P np)1(=

Values of the parametric first derivatives of a Bezier curve at the end points can be
calculated from control-point coordinates as

 P 10 npnp)0(' +−=
 P n1n npnp)1(' +−= −

Thus, the slope at the beginning of the curve is along the line joining the first two
control points, and the slope at the end of the curve is along the line joining the last
two endpoint. Similarly, the parametric second derivatives of a Bezier curve at the
endpoints are calculated as

)]pp()pp)[(1n)n)0(''p 0112 −−−−=
)]pp()pp)[(1n)n)1(''p n1n1n2n −−−−= −−−

Another important property of any Bezier curve is that it lies within the convex hull
(convex polygon boundary) of the control points. This follows from the properties of
Bezier blending functions: They are all positive and their sum is always 1,

 ∑
=

=
n

k
nk uB

0
, 1)(

so that any curve position is simply the weighted sum of the control-point positions.
The convex-hull property for a Bezier curve ensures that the polynomial will not have
erratic oscillations.

p1

p2

p0 = p5 p4

p1 = p2
p3

p4
p0

p3

Figure 13 (a): Shows closed Figure 13 (b): Shows that a Bezier curve can be made to
Bezier curve generated by specifying the pass closer to a given coordinate position
first and last control points at the same location by assigning multiple control points to
 that position.

Note:
1) Generalising the idea of Bezier curve of degree at n based on n+1 control point

p0,…..pn
 P(0)= P0
 P(1) =pn

20

 Curves
and Surfaces

Values of parametric first derivates of Bezier curve at the end points can be
calculated from control point

Coordinates as

 P’(0) = -nP0 +n P1

 P’(1) = -nPn-1 + nPn

 Thus, the slope at the beginning of the curve is along the line joining two control

points, and the slope at the end of the curve is along the line joining the last two
endpoints.

2) Convex hull: For 0≤ t ≤ 1, the Bezier curve lies entirely in the convex hull of its

control points. The convex hull property for a Bezier curve ensures that
polynomial will not have erratic oscillation.

3) Bezier curves are invariant under affine transformations, but they are not invariant

under projective transformations.

4) The vector tangent to the Bezier curve at the start (stop) is parallel to the line

connecting the first two (last two) control points.

5) Bezier curves exhibit a symmetry property: The same Bezier curve shape is

obtained if the control points are specified in the opposite order. The only
difference will be the parametric direction of the curve. The direction of
increasing parameter reverses when the control points are specified in the reverse
order.

6) Adjusting the position of a control point changes the shape of the curve in a

“predictable manner”. Intuitively, the curve “follows” the control point.

There is no local control of this shape modification. Every point on the curve (with
the exception of the first and last) move whenever any interior control point is moved.

Following examples prove the discussed properties of the Bezier curves

Example 5: To prove: P (u = 0) = p0

Solution: ∵ P (u) = pi Bn, i (u)
0

n

i=
∑

 = p0 Bn,0 (u) + p1 Bn, 1 (u) +…… + pn Bn, n(u)……………(1)
Bn,i (u) = uci

n i (1 – u)n– i

Bn,0 (u) = n u
0c

0 (1– u)n – 0 = !
0!(0)!

n
n −

. 1. (1 – u)n = (1 – u)n

Bn,1 (u) = n u’ (1 – u)
1c

n – 1 = !
1!(1)!

n
n −

. u. (1 – u)n – 1

We observe that all terms expect Bn,0 (u) have multiple of ui (i = 0 to n) using these
terms with u = 0 in (1) we get,

P (u = 0) = p0 (1 – 0)n + p1. 0. (1 – 0)n – 1 . n + 0 + 0 + ……+ 0

P (u = 0) = p0 Proved

Example 6: To prove P (1) = pn

Solution: As in the above case we find each term except Bn, n (u) will have multiple
of (1 – u)i (i = 0 to n) so using u = 1 will lead to result = 0 of all terms except of Bn, n
(u).

21

Modeling
and Rendering

Bn, n (u) = n!
n! (n-n)!

 un (1 – u)n – n = un

 P (u – 1) = p0 . 0 + p1. 0 + ……. + pn. 1n
 = pn

Example 7: Prove:
n

i=0
∑ Bn, i = 1

Solution: By simple arithmetic we know,
[(1 – u) + u]n = 1n = 1 ………………..(1)
expending LHS of (1) binomially we find
[(1 – u) + u]n = (1 – u)

0cn n + u (1 – u)
1cn n – 1 + u

2cn 2 (1 – u)n – 2 + ….. + n

u
nc

n

 =
0

n

i=
∑ uci

n i (1 – u)n – i

[(1 – u) + u]n =
0

n

i=
∑ Bn, i (u) ………………(2)

by (1) & (2) we get

0

n

i=
∑ Bn, i (u) = 1

Note: Proof of following properties of Bezier curves is left as an exercise for the
students

 P’ (0) = n (p1 – p0)

P’ (1) = n (pn – pn–1) = n (pn – pn – 1)
P” (0) = n (n – 1) (p0 – 2p1 + p2)
P” (1) = n (n – 1) (pn – 2 pn – 1 + pn – 2)

To ensure the smooth transition from one section of a piecewise parametric curve or
any Bezier curve to the next we can impose various continuity conditions at the
connection point for parametric continuity we match parametric derivatives of
adjoining curve section at their common boundary.

Zero order parametric continuity described by C0 continuity means curves are only
meeting as shown in Figure 14 while first order parametric continuity referred as C1
continuity, means that tangent of successive curve sections are equal at their joining
point. Second order parametric continuity or C2

 continuity, means that the parametric
derivatives of the two curve sections are equal at the intersection. As shown in
Figure 14 below first order continuity have equal tangent vector but magnitude
may not be the same.

 Zero order parametric Continuity

Figure 14 (a)

First order parametric continuity
Figure 14 (c)

C0 & C1 continuity
Second order parametric continuity

Figure 14 (b)

C0 continuity C0 & C1 & C2 continuity

22

 Curves
and Surfaces

With the second order continuity, the rate of change of tangent vectors for successive
section are equal at intersection thus result in smooth tangent transition from one
section to another.

First order continuity is often used in digitized drawing while second order continuity
is used in CAD drawings.

Geometric continuity is another method to join two successive curve sections. G0

continuity is the same as parametric continuity (i.e., two curves sections to be joined
must have same coordinate position at the boundary point) i.e., curve section are
joined together such that they have same coordinates position at the boundary point.
First order geometric continuity G(1) means that the tangent vectors are the same at
join point of two successive curves i.e., the parametric first derivative are
proportional at the intersection of two successive sections while second order
geometric continuity is G2

 means that both first and second order parametric derivates
of the two curve sections are proportional at their boundary. In G2 curvature of the
two successive curve sections will match at the joining position

Note:
1) The joining point on the curve with respect to the parameter based on

second derivates of Q(t) is the acceleration. While the Q’(t) is an tangent
vector stating velocity. i.e., the tangent vector gives the velocity along the curve .
the camera velocity and acceleration at join point should be continuous, to avoid
jerky movements in the resulting animation sequence.

2) Curve segment having a continuity C1 implies the G1 continuity but the

converse is generally not true. That is, G1 curves are less restrictive than the C1
 , so

curves can be G1 but not necessarily C1
.

Curves such as Spline curve, cubic spline curve are curve fitting method used to
produce a smooth curve given a set of points throughout out the path weight are
distributed. Spline is used in graphics to specify animation paths, to digitize drawings
for computer storage mainly CAD application, use them for automobile bodies design
in aircraft design, etc.

Spline curve is constructed using Control points which control the shape of the curve
Spline curve is a composite curve formed with sections which are polynomial in
nature. These pieces are joined together in such a manner that continuity condition at
boundary is maintained. A piecewise parametric polynomial section when passes
through each control point curve is known to Interpolate the set of control points
refer Figure 15. On the other hand when polynomial is not fitted to the set to very
control point it is known to approximate the set of control points.

y(t)

Figure 15 (a): Interpolating curve Figure 15 (b): Approximating Curve

x(t)

Note: if P (u)→ = Bezier curve of order n and Q (u) → Bezier curve of order m

23

 Modeling

and Rendering

Then Continuities between P(u) and Q(u) are:

1) Positional continuity of 2 curves

P (u) = p
0

n

i=
∑ i Bn, i(u) & Q (u) = ∑

=

m

j
jmj uBq

0
,)(

is pn = q0

2) C1 continuity of 2 curve P (u) & Q (u) says that point pn – 1, pn on curve P(u) and

q0, q1 points on curve Q(u) are collinear i.e.,

)()(011 qqmppn nn −=− −

)(101 −−+= nn pp
m
nqq

⇒ d p = d q
 d u u=1 d v v=0

G(1) continuity of 2 curves P(u) & Q(u) at the joining namely the end of P(u) with
the beginning of q(u) is:

 0qpn =
),()(011 qqknppn nn −=− − where k is a constant & k > 0
 ⇒ 101 ,, qqpp nn =− are collinear

3) c2 continuity:

a) C(1) continuity
b) m (m – 1) (q0 – 2q1 + q2)

= n (n – 1) (pn – 2pn – 1 + pn – 2)

 i.e., points pn – 2, pn – 1, pn of P(u) and points q0 , q1, q2 of Q(u) must be collinear

further we can check whether both first and second order derivatives of two curve
sections are the same at the intersection or not i.e.,

 d p = d q
 d u u=1 d v v=0

and

 d2 p = d 2q
 d u2 u=1 d v2 v=0

if they are same we can say we have C2 continuity

Note: similarly we can define higher order parametric continuities

Example 8: An animation shows a car driving along a road which is specified by a
Bezier curve with the following control points:

Xk 0 5 40 50
Yk 0 40 5 15

24

 Curves
and Surfaces

The animation lasts 10 seconds and the key frames are to be computed at 1 second
intervals. Calculate the position of the car on the road at the start of the 6th second of
the animation.

Solution: Using similar methods to the previous exercise we can calculate the
blending functions as:

1. B03 = 3!/(0! x (3-0)!) u0(1 - u)(3-0) = 1u0(1 - u)3 = (1 - u)3
2. B13 = 3!/(1! x (3-1)!) u1(1 - u)(3-1) = 3u1(1 - u)2 = 3u(1 - u)2
3. B23 = 3!/(2! x (3-2)!) u2(1 - u)(3-2) = 3u2(1 - u)1 = 3u2(1 - u)
4. B33 = 3!/(3! x (3-3)!) u3(1 - u)(3-3) = 1u3(1 - u)0 = u3

The function x(u) is equal to x(u) = xkBk where k=0,1,2,3

x(u) = xkBk = x0B03 + x1B13 + x2B23 + x2B33
 = (0)(1 - u)3 + 5 [3u(1 - u)2] + 40 [3u2(1 - u)] + 50 u3
 = 15u(1 - u)2 + 120u2(1 - u) + 50u3

similarly y(u) = y0B03 + y1B13 + y2B23 + y2B33
 = (0)(1 - u)3 + 40 [3u(1 - u)2] + 5 [3u2(1 - u)] + 15 u3
 = 120u(1 - u)2 + 15u2(1 - u) + 15u3

At the start of the sixth second of the animation, i.e., when u=0.6, we can use these
equations to work out that x(0.6) = 29.52 and y(0.6) = 16.92.

The path of the car looks like this

 0 5 10 15 20 25 30 35 40 45 50

40
35
30
25
20
15
10
5
0

 Figure 16
1.4.3 Bezier Surfaces

Two sets of Bezier curve can be used to design an object surface by specifying by an
input mesh of control points. The Bézier surface is formed as the cartesian product of
the blending functions of two Bézier curves.

∑∑
= =

=
m

j
nk

n

k
mjkj uBvBpvuP

0
,

0
,,)()(),(

with p specifying the location of the (m + 1) by (n + 1) control points. k,j

The corresponding properties of the Bézier curve apply to the Bézier surface.

The surface does not in general pass through the control points except for the corners
of the control point grid.

The surface is contained within the convex hull of the control points.

25

26

Modeling
and Rendering

Figure 17

The control points are connected via a dashed line, and solid lenes shows curves of
constant u and constant v. Each curve is ploted by varying v over the interval from 0
to 1, with u fixed at one of the values in this unit interval curves of constant v are
plotted.

Figures (a), (b), (c) illustrate Bezier surface plots. The control points are connected by
dashed lines, and the solid lines show curves of constant u and constant v. Each curve
of constant u is plotted by varying v over the interval from 0 to 1, with u fixed at one
of the values in this unit interval. Curves of constant v are plotted similarly.

Figure 18 (a)

Bezier surfaces constructed for m=3, n=3,
Dashed lines connect the control points

Boundary Line

L2
L1

In Figure (c) first-order continuity is establish
length L2 constant for each collinear line of co
between the surface sections. Figure (c) also
Bezier sections. As with curves, a smooth tran
assured by establishing both zero-order and fi
Zero-order continuity is obtained by matching
 Figure 18 (b)
Bezier surfaces constructed for m=4, n=4.
Dashed lines connect the control points.
 Figure 18 (c)

Composite Bezier surface constructed with two
Bezier sections, joined at the indicated boundary line.
The dashed lines connect specified control points.
ed by making the ratio of length L1 to
ntrol points across the boundary

illustrates a surface formed with two
sition from one section to the other is
rst-order continuity at the boundary line.
 control points at the boundary. First-

 Curves
and Surfaces

order continuity is obtained by choosing control points along a straight line across the
boundary and by maintaining a constant ration of collinear line segments for each set
of specified control points across section boundaries.

 Check Your Progress 3
1) Based on the Bezier curve definition, derive the equation of the 3 point Bezier

curve defined by the following control points. (-1,0), (0,2), and (1,0).

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

2) Discuss how a Bezier surface is created. In particular discuss
(a) The basic structure of a Bezier surface.
(b) What blending function is used.

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

1.5 SURFACE OF REVOLUTION

In the above sections we have learned various techniques of generating curves, but if
we want to generate a close geometry, which is very symmetric in all the halves, i.e.,
front back, top, bottom; then it will be quite difficult for any person by doing it
separately for each half. Under such a situation the concept of surface revolution is
quite useful, because it helps in producing graphic objects such that they are very
symmetric in every half. These geometries produced after Surface revolution are also
known as Sweep Representations, which is one of the solid modeling construction
techniques provided by many graphic packages. Sweep representations are useful for
constructing three-dimensional objects that possess translational, rotational, or other
symmetries. We can represent such objects by specifying a two-dimensional shape
and a sweep that moves the shape through a region of space. A set of two-dimensional
primitives, such as circles and rectangles, can be provided for sweep representations
as menu options. Other methods for obtaining two-dimensional figures include closed
spline-curve constructions and cross-sectional slices of solid objects. Let us discuss
this simple technique of generating symmetric objects.

Say we are having a point P(x1,y1) in the X-Y plane (not at origin); if we make that
point to revolve about Z axis then the point will trace circular geometry. Similarly, if
the basic curve subjected to revolution is a Line segment then it will produce a

27

cylinder (symmetric about the axis of revolution). Therefore, different base curves we
will get different surfaces of revolution, e.g.,

Modeling
and Rendering

i) Base Curve: say just a point when it rotates about x axis it will trace a circular

surface of revolution.

P(x1,y1)

{Base curve: a point
surface of revolution:

z x

y

 Figure 19

ii) If base curve ⇒ a line segment parallel to the x axis then a cylinder will be traced

as a surface of revolution. {Base curve: straight line surface
of revolution: cylinder}

x

y

 Figure 20 z

iii) If the line segment is inclined with one end point at the origin then a cone will be

traced

Figure 21

iv) If a semi-circle is rotated then a sphere is traced.

{Base curve: a point surface of
revolution: Circle}

z

z

y

x

{Base curve: semi-circle
surface of revolution

Semi

x

y

Sphere
Figure 22

By this moment I hope it will be clear to you how a simple revolution of curve about
any axis simplifies the creation of symmetric geometries You may use combination of
basic curves to generate complex geometries. Now let us discuss the mathematics
behind such creations.

28

 Curves
and Surfaces

How to find surface of revolution: Say there is an arbitrary base curve which when
rotated about x-axis traces an arbitrary surface of revolution about the axis it is
revolving

Figure 23

y

x

z
RevolutionSurface of

x, y, z
Base

To find surface of revolution consider a point. (x, y, z) on base curve. Say curve is to
revolve about x-axis ⇒ Rotational transformation about x-axis is to be applied to (x,
y, z).

(x, y, z) → ; 0 ≤ θ ≤ 2π.
1 0 0
0 cosθ sinθ
0 sinθ cosθ

 
 
 
 − 

As the revolution is about X axis so it has to be constant, for each section of the
complete curve (you may change this value of X in steps, as you do in any
programming language ‘X++’; hence a continuous, symmetric curve of any arbitrary
shape will be available).

⇒ (x, y, z) → (x, y, 0) ; 0 ≤ θ ≤ 2π.
1 0 0
0 cosθ sinθ
0 sinθ cosθ

 
 
 
 − 

⇒ (x, y, z) → (x, y cosθ, y sin θ). These points trace surface of revolution about x-
axis.

Note: a) if a point on base curve is given by parametric form, i.e., (x(u), y(u), z(u))

then, surface of revolution about x-axis will be
 [x(u), y(u), z(u)] → [x(u), y(u) cos θ, y(u) sin θ]
 0 ≤ u ≤ 1; 0 ≤ θ ≤ 2π.

 b) Tracing an image involves movement of points from one place to another,

i.e., translational transformation is to be used. If (x, y, z) is a point on a base
curve then moving the respective points on base curve from one place to
other traces an image.

 c) If ⇒ the direction in which curve is to be moved and d

ur

 v ⇒ scalar quantity representing the amount by which curve is to be
shifted.

 Displacing the curve by amount v , the curve will be traced at a new
position or is swept to a new position.

d
ur

29

 (x(u), y(u), z(u)) → coordinate points of base curve in parametric form
(u→parameter)

Modeling
and Rendering

 (x(u), y(u), z(u)) → (x(u), y(u), z(u)) + v d
ur

 0 ≤ u ≤ 1; 0 ≤ v ≤ 1.

In general, we can specify sweep constructions using any path. For rotational sweeps,
we can move along a circular path through any angular distance from 0 to 360°. For
noncircular paths, we can specify the curve function describing the path and the
distance of travel along the path. In addition, we can vary the shape or size of the
cross section along the sweep path. Or we could vary the orientation of the cross
section relative to the sweep path as we move the shape through a region space.

Figure 24 illustrates construction of a solid with a translational sweep. Translating the
control points of the periodic spline curve in (a1) generates the solid shown in (b1),
whose surface can be described with point function P(u, v).

 p2 p1

Figure 24 (a) Figure 24 (b)

p3 p0

P(u)

P(u, v)

v

u

Figure 25 illustrates Construction of a solid with a rotational sweep. Rotating the
control pints of the periodic spline curve in (a2) about the given rotation axis
generates the solid shown in (b2), whose surface can be described with point function
P(u, v).

 Axis of Rotation

p2

p3

p1

p0

P(u)

v

P(u, v)

u

Figure 25 (a) Figure 25 (b)

In the example of object shown in Figure 25, the designing is done by using a
rotational sweep. This time, the periodic spline cross-section is rotated about an axis
of rotation specified in the plane of the cross-section to produce the wireframe.

30

 Curves
and Surfaces

Any axis can be chosen for a rotational sweep. If we use a rotation axis perpendicular
to the plane of the spline cross-section in Figure 25(b) we generate a two-dimensional
shape. But if the cross section shown in this figure has depth, then we are using one
three-dimensional object to generate another.

1.6 SUMMARY

This unit has covered the techniques of generating polygons, curves and closed
surfaces. Under those techniques we have discussed various polygonal
representational methods like tables, equations. Under the section of curves and
surfaces after having brief discussion on mathematical representations of the curve
through polynomial and parametric equation we have discussed the topic of Bezier
curves and their applications. In the end of the unit we have discussed the concept of
surface of revolution, which helps in generating 2D and 3D surfaces from 1D and 2D
geometries.

1.7 SOLUTIONS/ANSWERS

Check Your Progress 1

1) So far as the accomplishment of the task to draw a polygon surface is

concerned, it can be done with the help of Vertex table and Edge table but then
there is a possibility that some edges can be drawn twice. Thus, the system will
be doing redundant processing for the display of object. Hence the time of
execution of task increases.

2) This extra information will help in rapid identification of the common edges

between the polygon surfaces. This information in turn provides useful support
in the process of surface rendering, which can be done smoothly when surface
shading varies smoothly across the edge from one polygon surface to the next.

3) Yes, we can expand the vertex table, the additional information in the table will

help in cross-referencing the vertices with corresponding edges. This will help
in reducing he redundant processing of a vertex information associated with a
polygon surface, hence reduces the execution time.

4) The more the information, the easier to check the error, if precisely all

information is available in the table then you need not waste time in calculations
and other tasks to diagnose an error in the polygon representation.

 5) Left for the student to do.

Check Your Progress 2

1) Left as an exercise.

2) Left as an exercise.

31

32

Modeling
and Rendering

Check Your Progress 3

1) To make the maths easier to understand we will first calculate the valuess of the
blending function B02, B12 and B22.

B02 = 2!/(0! x (2 – 0)!) u0(1 – u)2 = 1u0(1 – u)2 = (1 – u)2

B12 = 2!/(0! x (2 – 1)!) u1(1 – u)2-1 = 2u1(1 – u)1 = 2u(1 – u)

B22 = 2!/(0! x (2 – 2)!) u2(1 – u)2-2 = 1u2(1 – u)0 = u2

We can therefore obtain the following equations.

x(u) = xkBk = x0B02 + x1B12 + x2B22
 = (– 1)(1 – u)2 + 0 [2u(1 – u)] + 1u2
 = 2u – 1 similarly y(u)

y(u) = ykBk = y0B02 + y1B12 + y2B22
 = (0)(1 – u)2 + 2 [2u(1 – u)] + 0u2
 = 4u(1 – u)

2) a) A Bezier surface is a surface formed by two orthogonal Bezier curves such
that they form a mesh of control points. Computing the value of each curve for a
constant value of u, will produce the control points for the columns run across
the curves.

b) The same blending function is used for Bezier surfaces that is used for Bezier

splines. The equation for a surface is ∑∑
= =

=
m

0j
n,k

n

0k
m,jk,j)u(B)v(Bp)v,u(P

 33

Visible-Surface
Detection

UNIT 2 VISIBLE-SURFACE DETECTION

Structure Page Nos.

2.0 Introduction 33
2.1 Objectives 35
2.2 Visible-Surface Detection 35
 2.2.1 Depth Buffer (or z-buffer) Method 36

 2.2.2 Scan-Line Method 40
 2.2.3 Area-Subdivision Method 43

2.3 Summary 47
2.4 Solutions / Answers 48

2.0 INTRODUCTION

Given a set of 3-D objects and a viewing position. For the generation of realistic
graphics display, we wish to determine which lines or surfaces of the objects are
visible, either from the COP (for perspective projections) or along the direction of
projection (for parallel projections), so that we can display only the visible lines or
surfaces. For this, we need to conduct visibility tests. Visibility tests are conducted to
determine the surface that is visible from a given viewpoint. This process is known as
visible-line or visible-surface determination, or hidden-line or hidden-surface
elimination.

To illustrate the concept for eliminating hidden-lines, edges or surfaces, consider a
typical wire frame model of a cube (see Figure 1). A wire frame model represents a
3-D object as a line drawing of its edges. In Figure 1(b), the dotted line shows the
edges obscured by the top, left, front side of the cube. These lines are removed in
Figure 1(c), which results in a realistic view of the object. Depending on the specified
viewing position, particular edges are eliminated in the graphics display. Similarly,
Figure 2(a) represents more complex model and Figure 2(b) is a realistic view of the
object, after removing hidden lines or edges.

 Figure1 (a) Figure1 (b) Figure 1(c)

.

 Figure 2(a) Figure 2(b)

There are numerous algorithms for identification of visible objects for different types
of applications. Some methods require more memory, some involve more processing
time, and some apply only to special types of objects. Deciding upon a method for a

 34

Modeling
and Rendering

particular application can depend on such factors as the complexity of the scene, type
of objects to be displayed, available equipment, and whether static or animated
displays are to be generated. These requirements have encouraged the development of
carefully structured visible surface algorithms.

There are two fundamental approaches for visible-surface determination, according to
whether they deal with their projected images or with object definitions directly.
These two approaches are called image-space approach and object-space approach,
respectively. Object space methods are implemented in the physical coordinate system
in which objects are defined whereas image space methods are implemented in screen
coordinate system in which the objects are viewed.

In both cases, we can think of each object as comprising one or more polygons (or
more complex surfaces). The first approach (image-space) determines which of n
objects in the scene is visible at each pixel in the image. The pseudocode for this
approach looks like as:

 for(each pixel in the image)
 {
 determine the object closest to the viewer that is passed by the projector

through the pixel;
 draw the pixel in the appropriate color;
 }

This approach requires examining all the objects in the scene to determine which is
closest to the viewer along the projector passing through the pixel. That is, in an
image-space algorithm, the visibility is decided point by point at each pixel position
on the projection plane. If the number of objects is ‘n’ and the pixels is ‘p’ then effort
is proportional to n.p.

The second approach (object-space) compares all objects directly with each other
within the scene definition and eliminates those objects or portion of objects that are
not visible. In terms of pseudocode, we have:

 for (each object in the world)
 {
 determine those parts of the object whose view is unobstructed (not blocked)

by other
 parts of it or any other object;
 draw those parts in the appropriate color;
 }

This approach compares each of the n objects to itself and to the other objects, and
discarding invisible portions. Thus, the computational effort is proportional to n2.

Image-space approaches require two buffers: one for storing the pixel intensities and
another for updating the depth of the visible surfaces from the view plane.

In this unit, under the categories of image space approach, we will discuss two
methods, namely, Z-buffer (or Depth-buffer) method and Scan-line method. Among all
the algorithms for visible surface determination, the Depth-buffer is perhaps the
simplest, and is the most widely used. Z-buffer method, detects the visible surfaces by
comparing surface depths (z-values) at each pixel position on the projection plane. In
Scan-line method, all polygon surfaces intersecting the scan-line are examined to
determine which surfaces are visible on the basis of depth calculations from the view
plane. For scenes with more than one thousand polygon surfaces, Z-buffer method is
the best choice. This method has nearly constant processing time, independent of

 35

Visible-Surface
Detection

number of surfaces in a scene. The performance of Z-buffer method is low for simple
scenes and high with complex scenes. Scan-line methods are effectively used for
scenes with up to thousand polygon surfaces.

The third approach often combines both object and image-space calculations. This
approach utilizes depth for sorting (or reordering) of surfaces. They compare the depth
of overlapping surfaces and identify one that is closer to the view-plane. The methods
in this category also use image-space for conducting visibility tests.

Area-subdivision method is essentially an image-space method but uses object-space
calculations for reordering of surfaces according to depth. The method makes use of
area coherence in a scene by collecting those areas that form part of a single surface.
In this method, we successively subdivide the total viewing area into small rectangles
until each small area is the projection of part of a single visible surface or no surface
at all.

2.1 OBJECTIVES

After going through this unit, you should be able to:
• understand the meaning of Visible-surface detection;
• distinguish between image-space and object-space approach for visible-surface

determination;
• describe and develop the depth-buffer method for visible-surface determination;
• describe and develop the Scan-line method for visible-surface determination, and
• describe and develop the Area-Subdivision method for visible-surface

determination.

2.2 VISIBLE-SURFACE DETECTION

As you know for the generation of realistic graphics display, hidden surfaces and
hidden lines must be identified for elimination. For this purpose we need to conduct
visibility tests. Visibility tests try to identify the visible surfaces or visible edges that
are visible from a given viewpoint. Visibility tests are performed by making use of
either i) object-space or ii) image-space or iii) both object-space and image-spaces.

Object-space approaches use the directions of a surface normal w.r.t. a viewing
direction to detect a back face. Image-space approaches utilize two buffers: one for
storing the pixel intensities and another for updating the depth of the visible surfaces
from the view plane. A method, which uses both object-space and image-space,
utilizes depth for sorting (or reordering) of surfaces. The methods in this category also
use image-space for conducting visibility tests. While making visibility tests,
coherency property is utilized to make the method very fast.

In this section, we will discuss three methods (or algorithms) for detecting visible
surfaces:

• Depth-buffer method
• Scan-line method
• Area subdivision method

Depth-buffer method and Scan-line method come under the category of image-space,
and area-subdivision method uses both object-space and image-space approach.

 36

Modeling
and Rendering

2.2.1 Depth-buffer (or z-buffer) Method

Depth-buffer method is a fast and simple technique for identifying visible-surfaces.
This method is also referred to as the z-buffer method, since object depth is usually
measured from the view plane along the z-axis of a viewing system. This algorithm
compares surface depths at each pixel position (x,y) on the view plane. Here we are
taking the following assumption:

 Plane of projection is z=0 plane
 Orthographic parallel projection.

For each pixel position (x,y) on the view plane, the surface with the smallest z-
coordinate at that position is visible. For example, Figure 3 shows three surfaces S1,
S2, and S3, out of which surface S1 has the smallest z-value at (x,y) position. So
surface S1 is visible at that position. So its surface intensity value at (x,y) is saved in
the refresh-buffer.

 S1
 S2 y-axis
 S3

 Display-screen x-axis

 (x,y)

 z-axis

Figure 3

Here the projection is orthographic and the projection plane is taken as the xy-plane.
So, each (x,y,z) position on the polygon surfaces corresponds to the orthographic
projection point (x,y) on the projection plane. Therefore, for each pixel position (x,y)
on the view plane, object depth can be compared by comparing z-values, as shown in
Figure 3.

For implementing z-buffer algorithm two buffer areas (two 2-D arrays) are required.

1) Depth-buffer: z-buffer(i,j) , to store z-value, with least z, among the earlier z-
values for each (x,y) position on the view plane.

2) Refresh-buffer: COLOR(i,j): for storing intensity values for each position.

We summarize the steps of a depth-buffer algorithm as follows:

Given: A list of polygons {P1,P2,…..,Pn}.
Step1: Initially all positions (x,y) in the depth-buffer are set to 1.0 (maximum depth)

and the refresh-buffer is initialized to the background intensity i.e.,
 z-buffer(x,y):=1.0; and
 COLOR(x,y):= Background color.

Step2: For each position on each polygon surface (listed in the polygon table) is then

processed (scan-converted), one scan line at a time. Calculating the depth (z-
value) at each (x,y) pixel position. The calculated depth is then compared to the
value previously stored in the depth buffer at that position to determine
visibility.
a) If the calculated z-depth is less than the value stored in the depth-buffer, the

new depth value is stored in the depth-buffer, and the surface intensity at

 37

Visible-Surface
Detection

that position is determined and placed in the same (x,y) location in the
refresh-buffer, i.e.,

If z-depth< z-buffer(x,y), then set
 z-buffer(x,y)=z-depth;
 COLOR(x,y)=Isurf(x,y); // where Isurf(x,y) is the projected intensity
value of the polygon
 surface Pi at pixel position (x,y).

After all surfaces have been processed, the depth buffer contains depth values for the
visible surfaces and the refresh-buffer contains the corresponding intensity values for
those surfaces.

In terms of pseudo code, we summarize the depth-buffer algorithm as follows:

Given: A list of polygons {P1,P2,…..,Pn}
Output: A COLOR array, which display the intensity of the visible polygon surfaces.
 Initialize:
 z-buffer(x,y):=0; and
 COLOR(x,y):= Back-ground color.
 Begin
 For (each polygon P in the polygon list) do {
 For (each pixel (x,y) that intersects P) do {
 Calculate z-depth of P at (x,y)
 If (z-depth < z-buffer[x,y]) then {

 z-buffer(x,y)=z-depth;
 COLOR(x,y)=Intensity of P at (x,y);
 }
 }
 }
 display COLOR array.

Calculation of depth values, z, for a surface position (x,y):

We know that for any polygon faces, the equation of the plane is of the form:

A.x+B.y+C.z+D=0 --------------------(1) , where A, B, C, D are known to us.

To calculate the depth value z, we have to solve the plane equation (1) for z:

z=(– A. x – B . y – D)/C --------(2)

Consider a polygon in Figure 4 intersected by scan-lines at y and y – 1 on y-axis.

 y
 y o o scan-line y
 y – 1 scan line (y – 1)

 x x+1 x-axis
 Figure 4

Now, if at position (x, y) equation (2) evaluates to depth z, then at next position
(x+1,y) along the scan line, the depth zH can be obtained as:

 38

Modeling
and Rendering

zH =[–A.(x+1) –B.y–D]/C --------------(3)

From equation (2) and (3), we have

z–zH =A/C

zH =z–A/C -----------------(4)

The ratio –A/C is constant for each surface. So we can obtain succeeding depth values
across a scan-line from the preceding values by a single addition. On each scan-line,
we start by calculating the depth on the left edge of the polygon that intersects that
scan-line and then proceed to calculate the depth at each successive position across the
scan -line by Equation-(4) till we reach the right edge of the polygon.

Similarly, if we are processing down, the vertical line x intersecting the (y–1)th scan-
line at the point (x, y-1). Thus from Equation (2) the depth zv is obtained as:

zv=[–A.x–B.(y–1) –D]/C

 =([–A.x–B.y–D]/C)+B/C

 =z+B/C ----------------(5)

Starting at the top vertex, we can recursively calculate the x position down the left
edge of the polygon from the relation: x’=x-1/m, where m is the slope of the edge (see
Figure 5). Using this x position, the depth z’ at (x’,y-1) on the (y-1) scan-line is
obtained as:

z’=[–A.x’–B.(y–1) –D]/C

 =[–A.(x–1/m) –B.(y–1) –D]/C

 =z+(A/m+B)/C ---------------------(6)

Since m=∞ for a vertical line, Equation (6) becomes equation (5).

 y

 y o scan-line y
 y–1 o scan line (y–1)

 x x’ x-axis

 Figure 5: Intersection position on successive scan lines along a left polygon edge

Thus, if we are processing down, then we can obtain succeeding depth values across a
scan-line from the preceding values by a single addition by using Equation (5), i.e.,
zv= z+B/C.

Thus, the summary of the above calculations are as follows:

 39

Visible-Surface
Detection

 You can obtain succeeding depth values across a scan-line from the
preceding values by a single subtraction, i.e., z’=z–A/C .

 If we are processing down, then we can also obtain succeeding depth values
across a scan-line from the preceding values by a single addition, i.e.,
z’= z+(A/m+B)/C . In other words, if we are processing up, then we can
obtain succeeding depth values across a scan-line from the preceding values
by a single subtraction, i.e., z’= z– (A/m+B)/C.

The following Figure 6 summarizes the above calculations.

Figure 6: Successive depth values, when processing left to right or processing up across a scan-line

Advantages (z-buffer method):

1) The z-buffer method is easy to implement and it requires no sorting of surface in a

scene.
2) In z-buffer algorithm, an arbitrary number of objects can be handled because each

object is processed one at a time. The number of objects is limited only by the
computer’s memory to store the objects.

3) Simple hardware implementation.
4) Online algorithm (i.e., we dont need to load all polygons at once in order to run

algorithm).

Disadvantages:

1) Doubles memory requirements (at least), one for z-buffer and one for refress-

buffer.
2) Device dependent and memory intensive.
3) Wasted computation on drawing distant points that are drawn over with closer

points that occupy the same pixel.
4) Spends time while rendering polygons that are not visible.
5) Requires re-calculations when changing the scale.

Example 1: How does the z-buffer algorithm determine which surfaces are hidden?

Solution: Z-buffer algorithm uses a two buffer area each of two-dimensional array,
one z-buffer which stores the depth value at each pixel position (x,y), another frame-
buffer which stores the intensity values of the visible surface. By setting initial values
of the z-buffer to some large number (usually the distance of back clipping plane), the
problem of determining which surfaces are closer is reduced to simply comparing the
present depth values stored in the z-buffer at pixel (x,y) with the newly calculated
depth value at pixel (x,y). If this new value is less than the present z-buffer value, this
value replaces the value stored in the z-buffer and the pixel color value is changed to
the color of the new surface.

Example 2: What is the maximum number of objects that can be handled by the z-
buffer algorithm?

 40

Modeling
and Rendering

Solution: In z-buffer algorithm, an arbitrary number of objects can be handled
because each object is processed one at a time. The number of objects is limited only
by the computer’s memory to store the objects.

Example 3: What happens when two polygons have the same z value and the z-buffer
algorithm is used?

Solution: z-buffer algorithms, changes colors at a pixel if z(x,y)<zbuf(x,y), the first
polygon surface will determine the color of the pixel.

Example 4: Assume that one allow 256 depth value level to be used. Approximately
how many memory would a 512x512 pixel display require to store z-buffer?

Solution: A system that distinguishes 256 depth values would require one byte of
memory (28=256) to represent z-value.

 Check Your Progress 1

1) z-buffer method use(s) ………….. :
 a) Only object-space approach b) Only image-space approach c) both object-

space & Image-space.
……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

2) What happens when two polygons have the same z value and the z-buffer

algorithm is used?

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

3) Assuming that one allows 232 depth value levels to be used, how much memory

would a 1024x768 pixel display require to stores the z-buffer?

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

2.2.2 Scan-Line method

In contrast to z-buffer method, where we consider one surface at a time, scan-line
method deals with multiple surfaces. As it processes each scan-line at a time, all
polygon intersected by that scan-line are examined to determine which surfaces are
visible. The visibility test involves the comparison of depths of each overlapping
surface to determine which one is closer to the view plane. If it is found so, then it is
declared as a visible surface and the intensity values at the positions along the scan-
line are entered into the refresh-buffer.

Assumptions:
1. Plane of projection is Z=0 plane.
2. Orthographic parallel projection.

 41

Visible-Surface
Detection

3. Direction of projection, d = (0,0, –1)
4. Objects made up of polygon faces.

Scan-line algorithm solves the hidden- surface problem, one scan-line at a time,
usually processing scan lines from the bottom to the top of the display.

The scan-line algorithm is a one-dimensional version of the depth –Buffer. We require
two arrays, intensity [x] & depth [x] to hold values for a single scan-line.

 y-axis

 * Q2
 Q1 *

 P1 P2

 x-axis
 Figure 7

Here at Q1and Q2 both polygons are active (i.e., sharing).

Compare the z-values at Q1 for both the planes (P1 & P2). Let z1

(1),z1
(2) be the z-value

at Q1 ,corresponding to P1& P2 polygon respectively.

Similarly
 z2

(1), z2
(2) are the z-values at Q2, corresponding to P1 & P2 polygon respectively.

Case1: z1

(1)< z1
(2)

 z2
(1)< z2

(2) Q1,Q2 is filled with the color of P2.

Case2: z1

(2)< z1
(1)

 z2
(2)< z2

(1) Q1,Q2 is filled with the color of P2.

Case3: Intersection is taking place.

In this case we have to go back pixel by pixel and determine which plane is closer.
Then choose the color of the pixel.

Algorithm (scan-line):

For each scan line perform step (1) through step (3).

1) For all pixels on a scan-line, set
 depth [x]=1.0 (max value) & Intensity [x] = background-color.

2) For each polygon in the scene, find all pixels on the current scan-line (say S1) that

lies within the polygon. For each of these x-values:

a) calculate the depth z of the polygon at (x,y)
b) if z < depth [x], set depth [x]=z & intensity corresponding to the polygon’s

shading.

3) After all polygons have been considered, the values contained in the intensity array

represent the solution and can be copied into a frame-buffer.

 42

Modeling
and Rendering

Advantages of Scan line Algorithm:

Here, every time, we are working with one-dimensional array, i.e., x[0…x_max] for
color not a 2D-array as in depth buffer algorithm.

Example 5: Distinguish between z-buffer method and scan-line method. What are the

visibility test made in these methods?

Solution: In z-buffer algorithm every pixel position on the projection plane is

considered for determining the visibility of surfaces w. r. t. this pixel. On
the other hand in scan-line method all surfaces intersected by a scan line are
examined for visibility. The visibility test in z-buffer method involves the
comparison of depths of surfaces w. r. t. a pixel on the projection plane. The
surface closest to the pixel position is considered visible. The visibility test
in scan-line method compares depth calculations for each overlapping
surface to determine which surface is nearest to the view-plane so that it is
declared as visible.

Example6: Given two triangles P with vertices P1(100,100,50), P2(50,50,50),

P3(150,50,50) and q with vertices Q1(40,80,60), q2(70,70,50), Q3(
10,75,70), determine which triangle should be painted first using the scan-
line method.

Solution: In the scan-line method, two triangles P and Q are tested for overlap in xy-

plane. Then they are tested for depth overlap. In this question, there is no
overlap in the depth. But P and Q have overlap in xy-plane. So the Q is
painted first followed by P.

 Check Your Progress 2

1) All the algorithm, which uses image-space approach, requires:

a) One buffer-area b) two buffer-areas c) three-buffer areas

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

2) All the algorithm, which uses object-space approach, requires:
 a) One buffer-area b) two buffer-areas c) three- buffer areas

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

3) Scan line method deals with ______________ surface(s) at a time for ascertaining
visibility

 a) single b) two c) multiple d) 100

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

4) What are the relative merits of object-space methods and image-space methods?

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

 43

Visible-Surface
Detection

2.2.3 Area-Subdivision method

This method is essentially an image-space method but uses object-space operations
reordering (or sorting) of surfaces according to depth. This method takes advantage of
area-coherence in a scene by locating those view areas that represent part of a single
surface. In this method we successively subdivide the total viewing (screen) area,
usually a rectangular window, into small rectangles until each small area is the
projection of part of a single visible surface or no surface at all.

Assumptions:

 Plane of projection is z=0 plane
 Orthographic parallel projection
 Direction of projection d=(0,0,-1)
 Assume that the viewing (screen) area is a square
 Objects are made up of polygon faces.

To implement the area-subdivision method, we need to identify whether the area is
part of a single surface or a complex surface by means of visibility tests. If the tests
indicate that the view is sufficiently complex, we subdivide it. Next, we apply the tests
to each of the smaller areas and then subdivide further if the tests indicate that the
visibility of a single surface is still uncertain. We continue this process until the
subdivisions are easily analyzed as belonging to a single surface or until they are
reduced to the size of a single pixel.

Starting with the full screen as the initial area, the algorithm divides an area at each
stage into 4 smaller area, as shown in Figure 8, which is similar to quad-tree
approach.

Initial Area

 A

 Figure 8 (a) Initial area (b) 1st subdivision (c) 2nd Subdivision (d) 3rd Subdivision

 1 2 1 2
3 4 3 4

1 2 1 2

3 4 3 4

1 2

 3 4

Test to determine the visibility of a single surface are made by comparing surfaces
(i.e., polygons P) with respect to a given screen area A. There are 4 possibilities:

1) Surrounding polygon: Polygon that completely contains the area (Figure 9(a)).

2) Intersecting (or overlapping) polygon: Polygon that intersects the area
(Figure 9(b)).

3) Contained polygon: polygon that is completely contained within the area
(Figure 9(c)).

4) Disjoint polygon: Polygon that is completely outside the area (Figure 9(d)).

 A

 Figure 9(a) Figure 9(b)

 44

Modeling
and Rendering

Figure 9(c) Figure 9(d)

The classification of the polygons within a picture is the main computational expense
of the algorithm and is analogous to the clipping algorithms. With the use of any one
of the clipping algorithms, a polygon in category 2 (intersecting polygon) can be
clipped into a contained polygon and a disjoint polygon (see Figure 10). Therefore,
we could proceed as if category 2 were eliminated.

 P2

A P1

Figure 10

No further subdivisions of a specified area are needed, if one of the following
conditions is true:

Case 1: All the polygons are disjoint from the area. In this case, the background color

can be displayed in the area.

Case 2: Exactly one polygon faces, after projection, intersecting or contained in the

square area. In this case the area is first filled with the background color, and
then the part of the polygon contained in the area is scan converted.

Case 3: There is a single surrounding polygon, but no intersecting or contained

polygons. In this case the area is filled with the color of the surrounding
polygon.

Case 4: More than one polygon is intersecting, contained in, or surrounding the area,

but one is a surrounding polygon that is in front of all the other polygons.
Determining whether a surrounding polygon is in front is done by computing
the z coordinates of the planes of all surrounding, intersecting and contained
polygons at the four corners of the area; if there is a surrounding polygon
whose four corner z coordinates are larger than one those of any of the other
polygons, then the entire area can be filled with the color of this surrounding
polygon.

To check whether the polygon is any one of these four cases, we have to perform the
following test:

Test 1: For checking disjoint polygons (use Min-max test).
 Suppose you have two polygons P1 and P2. The given polygons P1 and P2

are disjoint if any of the following four conditions is satisfied (see
Figures-11(a) and 11(b)): These four tests are called Min-max test.

 45

Visible-Surface
Detection

i) x(1)
max < x(2)

min
ii) x(2)

max < x(1)
min

iii) y(1)
max < y(2)

min
iv) y(2)

max < y(1)
min

y(2)
min

y(1)
max

P1

P2

 x(1)

max x(2)
min

P2
P1

 Figure 11(a) Figure 11(b)

Test 2: (Intersection Test): If Min-max test fails then we go for intersection test.
Here we take each edge one by one and see if it is intersecting. For example, see
Figure 12, for each edge of P1 we find the intersection of all edges of P2.

 * P2 P1

 Figure 12

Test 3: (Containment test): If intersection test fails, then it can be either contained
polygon or surrounding polygon. So we do the containment test. For this test we have
the following three cases, shown in Figures 13(a),(b) and (c).

a) P1 contains P2.
b) P2 contains P1.
c) P1 and P2 are disjoint.

P2

P1
P1

P2

P2
P1

 Figure 13(a): P1 contained P2 (b) P2 contained P1 (c) P1and P2 are disjoint

Case a: Verify a vertex point of P2 lies inside of P1. If the result is true, P2 is

completely inside of P1.

Case b: If the result of case-a is not true, then verify whether P2 contains a vertex

point of P1. If the result is true, then P2 contains P1.

Case c: If both case-a and case-b (containment test) failed then we conclude that P1

and P2 are disjoint.

For a given screen area, we keep a potentially visible polygons list (PVPL), those in
categories 1, 2 and 3. (Disjoint polygons are clearly not visible). Also, note that on
subdivision of a screen area, surrounding and disjoint polygons remain surrounding
and disjoint polygons of the newly formed areas. Therefore, only contained and
intersecting polygons need to be reclassified.

 46

Modeling
and Rendering

Removing Polygons Hidden by a Surrounding Polygon:

The key to efficient visibility computation lies in the fact that a polygon is not visible
if it is in back of a surrounding polygon. Therefore, it can be removed from the PVPL.
To facilitate processing, this list is sorted by zmin, the smallest z coordinate of the
polygon within this area. In addition, for each surrounding polygon S, we also record
its largest z coordinate, zsmax.

If, for a polygon P on the list, zpmin >zsmax (for a surrounding polygon S), then P is
hidden by S and thus is not visible. In addition, all other polygons after P on the list
will also be hidden by S, so we can remove these polygons from the PVPL.

Subdivision Algorithm

1) Initialize the area to be the whole screen.

2) Create a PVPL w.r.t. an area, sorted on zmin (the smallest z coordinate of the

polygon within the area). Place the polygons in their appropriate categories.
Remove polygons hidden by a surrounding polygon and remove disjoint
polygons.

3) Perform the visibility decision tests:

a) If the list is empty, set all pixels to the background color.
b) If there is exactly one polygon in the list and it is classified as intersecting

(category 2) or contained (category 3), color (scan-converter) the polygon,
and color the remaining area to the background color.

c) If there is exactly one polygon on the list and it is a surrounding one, color the
area the color of the surrounding polygon.

d) If the area is the pixel (x,y), and neither a, b, nor c applies, compute the z
coordinate z(x, y) at pixel (x, y) of all polygons on the PVPL. The pixel is
then set to the color of the polygon with the smallest z coordinate.

4) If none of the above cases has occurred, subdivide the screen area into fourths.

For each area, go to step 2.

Example 7: Suppose there are three polygon surfaces P,Q, R with vertices given by:
 P: P1(1,1,1), P2(4,5,2), P3(5,2,5)
 Q: Q1(2,2,0.5), Q2(3,3,1.75), Q3(6,1,0.5)
 R: R1(0.5,2,5.5), R2(2,5,3), R3(4,4,5)

Using the Area subdivision method, which of the three polygon surfaces P, Q, R
obscures the remaining two surfaces? Assume z=0 is the projection plane.

Solution: Here, we have z=0 is the projection plane and P, Q, R are the 3-D planes.

We apply first three visibility decision tests i.e. (a), (b) and (c), to check the
bounding rectangles of all surfaces against the area boundaries in the xy-
plane. Using test 4, we can determine whether the minimum depth of one of
the surrounding surface S is closer to the view plane.

Example 8: What are the conditions to be satisfied, in Area-subdivision method, so

that a surface not to be divided further?

Solution: In an area subdivision method, the given specified area IS not to be divided

further, if the following four conditions are satisfied:

1) Surface must be outside the specified area.

 47

Visible-Surface
Detection

2) There must be one overlapping surface or one inside surface.
3) One surrounding surface but not overlapping or no inside surface.
4) A surrounding surface/obscures all other surfaces with the specified area.

 Check Your Progress 3

1) Area- subdivision method uses:

a) Only image-space b) Only object-space c) both image and object space

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

2) What are the basic concepts of Area-subdivision method?

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

2.3 SUMMARY

• For displaying a realistic view of the given 3D-object, hidden surfaces and hidden

lines must be identified for elimination.

• The process of identifying and removal of these hidden surfaces is called the

visible-line or visible-surface determination, or hidden-line or hidden-surface
elimination.

• To construct a realistic view of the given 3D object, it is necessary to determine

which lines or surfaces of the objects are visible. For this, we need to conduct
visibility tests.

• Visibility tests are conducted to determine the surface that is visible from a given

viewpoint.

• There are two fundamental approaches for visible-surface determination,

according to whether they deal with their projected images or with object
definitions directly. These two approaches are called image-space approach and
object-space approach, respectively.

• Object space methods are implemented in the physical coordinate system in which
objects are defined whereas image space methods are implemented in screen
coordinate system in which the objects are viewed.

• Image-space approach requires examining all the objects in the scene to determine

which is closest to the viewer along the projector passing through the pixel. That
is, the visibility is decided point by point at each pixel position on the projection
plane. If the number of objects is ‘n’ and the pixels is ‘p’ then effort is
proportional to n.p.

 48

Modeling
and Rendering

• Object-space approach compares all objects directly with each other within the
scene definition and eliminates those objects or portion of objects that are not
visible.

• Object-space approach compares each of the n objects to itself and to the other

objects, discarding invisible portions. Thus the computational effort is
proportional to n2.

• Under the category of Image space approach, we have two methods: 1) Z-buffer

method and 2) Scan-line method.

• Among all the algorithms for visible surface determination, the Z-buffer is
perhaps the simplest, and is the most widely used method.

• Z-buffer method detects the visible surfaces by comparing surface depths

(z-values) at each pixel position on the projection plane.

• For implementing z-buffer algorithm, we require two buffer areas (two 2-D

arrays): 1) Depth-buffer[i,j], to store the depth-value of the visible surface for
each pixel in the view plane, and 2) Refresh-buffer[i,j], to store the pixel
intensities of the visible surfaces.

• In contrast to z-buffer method, Scan-line method deals with multiple surfaces. As

it processes each scan-line at a time, all polygon intersected by that scan-line are
examined to determine which surfaces are visible. The visibility test involves the
comparison of depths of each overlapping surfaces to determine which one is
closer to the view plane. If it is found so, then it is declared as a visible surface
and the intensity values at the positions along the scan-line are entered into the
refresh-buffer.

• Area-subdivision method is essentially an image-space method but uses object-

space calculations for reordering of surfaces according to depth. The method
makes use of area coherence in a scene by collecting those areas that form part of
a single surface. In this method, we successively subdivide the total viewing area
into small rectangles until each small area is the projection of part of a single
visible surface or no surface at all.

2.4 SOLUTIONS/ANSWERS

Check Your Progress 1

1) b

2) z-buffer algorithms, changes colors at a pixel if z(x,y)<zbuf(x,y), the first polygon

surface (which is written) will determine the color of the pixel.

3) A system that distinguishes 232 depth values would require four bytes of memory

to represent each z value. Thus total memory needed= 4x1024x768=3032K

Check Your Progress 2

1) b

2) a

 49

Visible-Surface
Detection

3) c

4) Image space approaches we determine which of the objects in the scene is visible,

at each pixel, by comparing the z-value of each object. Object-space approach
determines the visibility of each object in the scene. For this all objects are
compared within scene definition.

Image-space methods are implemented in screen coordinate system whereas
Object-space methods are implemented in the physical coordinate system.

Image-space approaches were developed for raster devices whereas object-space
approaches were developed for vector graphics systems. In case of image-space
approaches, the results are crude and limited by the resolution of the screen
whereas in object-space approaches, we have very precise results (generally to the
precision of a machine).

Check Your Progress 3

1) a

2) The area-subdivision algorithm works as follows:

 Step-1: A polygon is seen from within a given area of the display screen if the

projection of that polygon overlaps the given area.

Step-2 : Of all polygons that overlap a given screen area, the one that is visible in
this area is the one in front of all the others.

Step-3 : If we cannot decide which polygon is visible (in front of the others) from
a given region, we subdivide the region into smaller regions until visibility
decisions can be made (even if we subdivide the region up to the pixel level).

50

Modeling and
Rendering

UNIT 3 POLYGON RENDERING AND RAY

TRACING METHODS

Structure Page Nos.
3.1 Introduction 50
3.2 Objectives 51
3.3 Illumination Model 51

3.3.1 Ambient Reflection 55
 3.3.2 Diffuse Reflection 56
 3.3.3 Specular Reflection 58
3.4 Shading 62

3.4.1 Gourand Shading or Intensity Interpolation Scheme 63
3.4.2 Phong Shading or Normal Vector Interpolation Shading 64

3.5 Ray Tracing 69
3.5.1 Basic Ray Tracing Algorithm 71

3.6 Summary 74
3.7 Solutions/Answers 74

3.1 INTRODUCTION

In unit 2 we had discussed some methods for visible-surface detection, but in order to
generate visibility the presence of light is one of the basic requirements. It is obvious
that without light and the interaction of light with objects, we would never see
anything at all. A study of the properties of light and how light interacts with the
surfaces of objects is hence vital in producing realistic images in Computer Graphics.
So before considering the production of images to be used in animation or any other
application it is worth studying some of the basic properties of light and colour and
also to introduce the modeling of the interaction of light with surfaces in Computer
Graphics because attainment of realism is one of the basic motives of computer
graphics and without considering the effect of light the same cannot be achieved.
From Principle Physics we can derive models, called “illumination models”, of how
light reflects from surfaces and produces what we perceive as color. In general, light
leaves some light source, e.g., a lamp or the sun, and is reflected from many surfaces
and then finally reflected to our eyes, or through an image plane of a camera. In the
overall process of reflection, scattering from the objects in the path of light rays there
is always production of shadows and shades with varying levels of intensities; this
concept of shading is very important in computer graphics because it also contributes
to the realism of the scene under preparation. Ray tracing is one of the exercises
performed to attain the realism in a scene. In simple terms Ray Tracing is a global
illumination based rendering method used for producing views of a virtual 3-
dimensional scene on a computer. Ray tracing is closely allied to, and is an extension
of, ray casting, a common hidden-surface removal method. It tries to mimic actual
physical effects associated with the propagation of light. Ray tracing handles shadows,
multiple Specular reflections, and texture mapping in a very easy straightforward
manner. In this unit we have a section dedicated to Ray tracing where we intend to
inform you how the basic ray tracing algorithm works. We will take a simple
approach for the explanation of the concept, avoiding the mathematical perspective
which is traditionally used on the subject. It is intended primarily to inform the
curious, rather than to teach the ambitious.

 51

Polygon Rendering
and Ray Tracing
Methods

3.2 OBJECTIVES

After going through this unit, you should be able to:
• describe types of light sources and their effects;
• discuss Illumination model and different reflections covered in this model;
• discuss the concept of shading and its types, and
• describe the concept of Ray tracing and algorithms used.

3.3 ILLUMINATION MODEL

Conceptually illumination is exposure of an object to the light, which contributes to
light reflected from an object to our eyes and this phenomenon in turn determines the
color perceived by an object. Thus, if white light is incident on an object then if that
object absorbs green and blue light then we shall perceive it as being red. The colour
of the light incident on the surface will determine the colour perceived by the viewer,
for example, if you see red rose in blue light then it will appear black because all blue
rays are absorbed by the object and nothing is reflected so it appears black. Similarly,
it is the reflectance of the object surface that determines that an object will appear dull
or shining; if the object absorbs a high percentage of the light incident on it then it will
appear dull whereas if it reflects a large percentage of the light incident on it then it
will appear glossy or shiny. For example, if green light were to shine on a red surface
then the surface would be perceived as black because a red surface absorbs green and
blue.

Thus, to produce realistic computer-generated images of solid opaque objects the
various interactions of light with a surface have to be accounted for, in some form of
reflected light and for this the Illumination Model is the gift to Computer Graphics
from Physics, which will us help to achieve realism in any graphic scene. An
illumination model is also called lighting model and sometimes referred to as shading
model, which is used to calculate the intensity of the light that is reflected at a given
point on surface of an object. Illumination models can be classified as:

Local illumination model: Where only light that is directly reflected from a light
source via a surface to our eyes is considered. No account is taken of any light that is
incident on the surface after multiple reflections between other surfaces. This is the
type of illumination model that is used in most scan-line rendering pipelines. That is
the contribution from the light that goes directly from the light source and is reflected
from the surface is called a “local illumination model”. So, for a local illumination
model, the shading of any surface is independent of the shading of all other surfaces.
The scan-line rendering system uses the local illumination model.

Global illumination model: Global illumination model adds to the local model the
light that is reflected from other surfaces to the current surface. A global illumination
model is more comprehensive, more physically correct, and produces more realistic
images. It is also more computationally expensive. In a Global Illumination Model the
reflection of light from a surface is modeled as in the local model with the addition of
light incident on the surface after multiple reflections between other surfaces.
Although the model is computationally more intensive than a local model but
attainment of realism through this model is quite possible. The two major types of
graphics systems that use global illumination models are Radiosity and Ray tracing.

Radiosity and Ray tracing (The difference in the simulation is the starting point: Ray
tracing follows all rays from the eye of the viewer back to the light sources. Radiosity
simulates the diffuse propagation of light starting at the light sources). They produce

52

Modeling and
Rendering

more realistic images but are more computationally intensive than scan-line rendering
systems which use local illumination model.

Ray tracing: Ray tracing follows all rays from the eye of the viewer back to the light
sources. This method is very good at simulating specular reflections and transparency,
since the rays that are traced through the scenes can be easily bounced at mirrors and
refracted by transparent objects. We will discuss these concepts Reflection/
Refraction/ transparency when we reach the section of ray-tracking.

Radiosity: Radiosity simulates the diffuse propagation of light starting at the light
sources. Since global illumination is a very difficult problem and with a standard ray
tracing algorithm, this is a very time consuming task, as a huge number of rays have
to be shot. For this reason, the radiosity method was invented. The main idea of the
method is to store illumination values on the surfaces of the objects, as the light is
propagated starting at the light sources.

Deterministic radiosity algorithms were used for radiosity for quite some time, but
they are too slow for calculating global illumination for very complex scenes. For this
reason, stochastic methods were invented, that simulate the photon propagation using
a Monte Carlo type algorithm.

Note: An illumination model is also called lighting model and sometimes referred to
as shading model, which is used to calculate the intensity of the light that is reflected
at a given point on the surface of an object, whereas the Surface rendering
algorithm uses the intensity calculations from an illumination model to determine the
light intensity for all projected pixels positions for the various surfaces in the scene.

From the above discussion we have realised that it’s the types of light source that
contributes a lot towards the attainment of realism in any computer graphics scene.

So, let us discuss the types of light sources. The light sources can not only be natural
like light from Sun or Moon or Stars but it could be man-made devices like bulb or
tube etc., or a highly polished surface. The light sources are referred as Luminous
objects which are the objects that emit radiant energy and they can be of both types
light emitting source (which could be of any type point /diffuse/distributed objects
emitting radiant energy) and a light reflecting source (Reflecting surfaces are
sometimes referred to as light reflecting sources, i.e., any polished surface capable of
reflecting, a considerable amount of light rays).

Note: When we view an opaque non-luminous object, we see reflected light from one
surface of the object. The total reflected light is the sum of each contribution from
light sources and other reflecting surfaces in the scene. Thus a surfaces that is not
directly exposed to a light source may still be visible if nearby objects are illuminated.

Reflecting Surface

Observer

Light Source

Opaque non luminous surface

 Figure 1

 53

Polygon Rendering
and Ray Tracing
Methods

From Figure 1 we can conclude that the expression given below holds good in real
life situations

Light viewed from opaque non-luminous surface =
Light from sources + Light from Other Surfaces

Since light sources are quite dominant which are required to establish realism in any
graphic scene. Further, there are a variety of light sources, so we need to classify
them.

Sources of Light can be classified as:

(a) Point source (b) Parallel Source (c) Distributed Source

Classification of Light Sources

 c
 b

 a

Figure 2: a-Point source; b-Parallel Source; c- Distributed Source

a) Point source: It is the simplest model for a light emitter. Here rays from source
follow radically diverging paths from the source position, e.g., sources such LED’s or
small bulbs, i.e., these are the light sources in which light rays originate at a point and
radially diverge, such type of sources have dimensions quite smaller as compared to
the size of object as shown in Figure 2, the source a is a point source

b) Parallel source: It is to be noted that when point source is at an infinite distance
then light rays are parallel and acts as parallel source as shown in Figure 2, the
source b is a parallel source.

c) Distributed light source: It models nearby sources such as the long fluorescent
light are modeled in category of distributed light source. Here all light rays originate
at a finite area in space. Shown in Figure 2, the source c is a distributed light source

Note: When a light is incident on an opaque surface, part of it is reflected and part of
it is absorbed. The amount of incident light reflected by a surface depends on the type
of material (shiny material reflect more of the incident light and dull surfaces absorb
more of the incident light). Thus, from the reflected amount of light we can deduce
many properties of the surface under exposure.

Description of any light source by a luminance, the factors considered are:

Light source described by a luminance

1) Each color (r-red, g-green, b-blue) is described separately

2) I = [Ir Ig Ib]T (I for intensity- which is the number of photons incident on a
surface in specific time duration).

54

Modeling and
Rendering

Now, the interaction of light and the surface under exposure contributes to several
optical phenomena like reflection, refraction, scattering, dispersion, diffraction, etc.

 Check Your Progress 1

1) Differentiate between Luminous and illuminous objects.

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

2) What will be the colour of a blue rose when it is viewed in red light? Give reasons

in support of your answer.

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

3) If the source of light is very far from the object what type of rays you expect from

the source? What will happen to the type of rays if source is quite close to the
object?

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

Let us discuss reflection and its types:

Reflection: It is the phenomenon of bouncing back of light, this phenomenon follows
laws of Reflection which are:

First Law of Reflection: The Incident ray, the Reflected ray and the Normal all lie on
the same plane.

Second Law of Reflection: The angle of Incidence is equal to the angle of Reflection.

 incident ray Normal reflected ray

 i r

 i r

 Figure 3: Plane of incidence

Note: Interaction of Light and Surface: A surface has 4 types of interaction with
light:

 55

Polygon Rendering
and Ray Tracing
Methods

• Diffuse reflection – light is reflected uniformly with no specific direction
• Specular reflection – light is reflected in a specific direction
• Diffuse transmission – light is transmitted uniformly with no preferred

direction
• Specular transmission – light is transmitted in a preferred direction.

Types of Reflection: In order to attain realism, this phenomenon of reflection, which
occurs due to interaction of light and surface, is needed to be implemented by
different ray tracing techniques and other tools. But the usage of tools depends on
types of reflection.

• Ambient Reflection
• Diffuse Reflection
• Specular Reflection

Let us discuss different types of reflections.

3.3.1 Ambient Reflection

Whenever we go for the study of light effects, then surroundings play an important
role and it is assumed that there exists some light in surroundings falling uniformly on
neighbourhood objects. This light in the environment is categorised as Ambient Light
(it is non-directional, i.e., it exposes the object uniformly from all directions).

Ambient light is the combination of light reflections from various surfaces to produce
uniform illumination which is referred to as Ambient light or Background light. Some
features associated with this kind of light are:

• Ambient light has no directional or spatial characteristics,
• The amount of ambient light incident on each object is constant for all surfaces

and for all directions.
• The amount of ambient light reflected is dependent on the properties of the

surface
• The intensity of ambient light uniform at every point may be different for every

surface and color r,g,b

Example: Consider a sphere with a light source above it, thus its lower half will not
be illuminated. In practice in a real scene this lower half would be partially
illuminated by light that had been reflected from other objects. This effect is
approximated in a local illumination model by adding a term to approximate this
general light which is ‘bouncing’ around the scene. This term is called the ambient
reflection term and is modeled by a constant term. Again the amount of ambient light
reflected is dependent on the properties of the surface.It is to be noted that if Ia →
intensity of ambient light; Ka → property of material (Ambient reflection coefficient
ka , 0 < ka < 1) then resulting reflected light is a constant for each surface independent
of viewing direction and spatial orientation of surface.

Say, Ia → Intensity of ambient light.
 I → Intensity of reflected ambient light
It is assumed that Ia ≠ 0 (Q Ia = 0 ⇒ These does not exit any light)
I α Ia ⇒ I = Ka Ia ; Ka → constant ; 0 ≤ Ka ≤ 1
Ka = 0 ⇒ object has absorbed the whole incident light.
Ka = 1 ⇒ object has reflected the whole incident light.
0 ≤Ka ≤1 ⇒ object has reflected some and absorbed some light.

56

Modeling and
Rendering

 Check Your Progress 2

1) How does the value of ambient reflection coefficient deduce the property of
material?

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

2) What should be the Ka for a black hole in universe? Give reasons.

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

3.3.2 Diffuse Reflection

Diffuse reflection is characteristic of light reflected from a dull, non-shiny surface.
Objects illuminated solely by diffusely reflected light exhibit an equal light intensity
from all viewing directions. That is in Diffuse reflection light incident on the surface
is reflected equally in all directions and is attenuated by an amount dependent upon
the physical properties of the surface. Since light is reflected equally in all directions
the perceived illumination of the surface is not dependent on the position of the
observer. Diffuse reflection models the light reflecting properties of matt surfaces, i.e.,
surfaces that are rough or grainy which tend to scatter the reflected light in all
directions. This scattered light is called diffuse reflection.

Figure 4: Diffused Reflection From surface

Note:

1) A very rough surface appears equally bright from all viewing directions Q the
intensity of reflected light is uniform in all directions thus produce diffuse
reflection which are constant over each surface in a scene, independent of the
viewing direction.

The fractional amount of the incident light that is diffusely reflected can be set
for each surface with parameter Kd . Kd →diffuse reflection coefficient or
diffuse reflectivity.0 ≤ Kd ≤ 1(Kd → property of material).

 Kd = 1 for highly reflective surfaces reflecting whole light.
 Kd = 0 for surfaces that absorb light fully.

2) Assumption: i) The diffuse reflections from the surface are scattered with
equal intensity in all directions, independent of viewing direction. Such
surfaces are called “ideal diffuse reflectors” or “Lambertion reflectors”

radiant high energy from any point on the surface is governed by
“LAMBERTS COSINE LAW”. (i.e., in diffuse reflection ease the intensity of
reflected light (I) is

Q

α cosθ and (ii) Kd ⇔ Ka (generally).

 57

Polygon Rendering
and Ray Tracing
Methods

“LAMBERTS COSINE LAW” states that the radiant energy from any small
surface area dA in any direction θ relative to the surface normal is proportional to
Cos θ.

In case of diffused reflection the source is directional but reflection is uniform.
say,
 Id → Intensity of incident diffused light.

Then as per the Lambert’s law the intensity of reflected light (I) will be α cos θ.
Where, θ = Angle between unit direction of incident light vector and unit normal to
the surface (or angle of incidence).

 /*LAMBERT’s LAW * / I α cos θ

 Kd → diffused reflection coefficient.
 0 ≤ Kd ≤ 1

I = Kd Id cos θ

 N

L

N
L

θ

θ

Figure 5

 .

)L.N(IKI dd=

I α cos θ ⇒ less θ leads to more reflection &
 more θ leads to less reflection.

Dot product of N & L vectors LN. =
"1"1

|L||N|
 cos θ = cos θ (|Q are) L|&|N|

 Unit vector in light directionUnit normal to surface

3) Combined effect of ambient and diffused reflection

Here the resulting intensity I will be the sum total of the intensities in case 8.3.2 &
8.3.3 we get

I = Ia Ka + Id Kd cos θ = Ia Ka + Id Kd ()LN.

Take Ka = Kd (Qboth constant properties of material to which light is incident, for
both sources there constant are same).

Example: Consider a shiny surface with diffused reflection coefficient of 0.8 and
ambient reflection coefficient of 0.7, the surface has normal in the direction of
2i + 3j +4k; say some light is incident on it from the direction i + j + k such that the

58

Modeling and
Rendering

ambient and diffused intensities are of order 2 and 3 units. Determine the intensity or
reflected light.

Solution: The combined effect of ambient and diffused reflection is given by
 I = Ia Ka + Id Kd cos θ = Ia Ka + Id Kd ()LN.

Using the data given in the equation we get

 I = 2 * 0.7 + 3 * 0.8 * ((2i + 3j + 4k).(i +j +k))
 = 1.4 + 2.4 (2 + 3 + 4)
 = 1.4 + 9*2.4
 = 23

3.3.3 Specular Reflection

Specular reflection is when the reflection is stronger in one viewing direction, i.e.,
there is a bright spot, called a specular highlight. This is readily apparent on shiny
surfaces. For an ideal reflector, such as a mirror, the angle of incidence equals the
angle of specular reflection, as shown below.

 Figure 6

Light is reflected mainly in the direction of the reflected ray and is attenuated by an
amount dependent upon the physical properties of the surface. Since the light reflected
from the surface is mainly in the direction of the reflected ray the position of the
observer determines the perceived illumination of the surface. Specular reflection
models the light reflecting properties of shiny or mirror-like surfaces.

Figure 7

Note: (1) In addition to diffuse reflection, light sources create highlights or bright

spots called specular reflection. This highlighting is more pronounced on
shiny surfaces than on dull surfaces.

(2) Hence, the local illumination model that is generally used is

illumination = Ambient + Diffuse + Specular

 59

Polygon Rendering
and Ray Tracing
Methods

This model of local illumination is usually called the Phong specular reflection
model.

Let us discuss the concept of specular reflection in a more practical way. Consider the
Figure 9. Here if R is the direction of specular reflection and V is the direction of the
viewer (located at the View Reference Point or VRP), then for an ideal reflector the
specular reflection is visible only when V and R coincide. For real objects (not perfect
reflectors) the specular reflectance can be seen even if V and R don’t coincide, i.e., it
is visible over range of values (or a cone of values). The shinier the surface, the
smaller the f(α) range for specular visibility. So a specular reflectance model must
have maximum intensity at R, with an intensity which decreases as f(α).

Figure 8

V

N

Viewer

 Q

From the above discussion we conclude that Specular reflection is the result of total or
near total reflection of the light in a concentrated region around the specular reflection
angle (α and the description of other variables shown in Figure 8 are

 N → Unit normal surface vector.
 R → Unit vector in the direction of ideal specular reflection

 L → Unit vector in the direction of pt. Light source
V → Unit vector pointing the viewer.
α → viewing angle relative to R .

Note:
• At α = 0 viewer will see light of more intensity.
• In case of ideal reflection (perfect mirror) incident light is reflected only in

specular reflection direction.
• Objects other than ideal reflection exhibit specular reflection over a finite

range of viewing positions around R (shiny surfaces have narrow specular
reflection range and dull surfaces have wide range).

 Check Your Progress 3

1) What will be the change in viewing angle of reflection if the surface under

exposure of light is transforming from imperfect reflector to a perfect one?

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

60

Modeling and
Rendering

2) If no variation in the intensity of reflection light is observed in any direction, then

what can you say about the smoothness of the surface? Also specify what type of
reflection you expect from such surface.

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

3) Discuss the law that forms the basis of Lambertion reflections?

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

Phong Model / Phong Specular Reflection Model

This is an empirical model, which is not based on physics, but physical observation.
Phong observed that for very shiny surfaces the specular highlight was small and the
intensity fell off rapidly, while for duller surfaces it was larger and fell off more
slowly. He decided to let the reflected intensity be a function of (cos α)n with n >=
200 for a shiny surface and n small for a dull surface. For a perfect reflector n equals
infinity, and for a piece of cardboard n equals 0 or 1. In the diagram below we can see
how the function (cos α)n behaves for different values of n. This empirical model for
calculating the specular reflection range was developed by Phong and hence called
PHONG MODEL/ PHONG SPECULAR REFLECTION MODEL. Which says that,
the intensity of specular reflection is proportional to cosnα (α lies between 0° & 90°)
so cos α varies from 1 to 0).where ‘n’ is specular reflection parameter dependent on
the type of surface.

Notice that the Phong illumination equation is simply the Lambert illumination
equation with an additional summand to account for specular reflection and ambient
reflection.

Intensity of specular reflection depends on material properties of surface and the angle
of incidence and the value of specular reflection parameter ‘n’ is determined by the
type of surface, we want to display.

• shiny surfaces are modeled with larger values of n (100 or more (say))
• dull surfaces are modeled with smaller values of n (down to 1)
• for perfect reflection n is ∞.
• for very dull surfaces (eq chalk etc) n is assigned value near to 1.
• In the diagram below we can see how the function (cos α)n behaves for

different values of n.

 Figure 9: The plot of cosn α with α

 61

Polygon Rendering
and Ray Tracing
Methods

 Figure 10: Shiny surface(large n) Figure 11: Dull surface(Small n)

VV

As per the phong model variation of Intensity (I) with α (because I α cosn α) is

i) for shiny surface (n > 1) ii) Dull surface (n ~= 1)

cosnα

I

α

cosnα

I

As per the Phong specular reflection,

I or Ispec. = Is Ks cosnα

where, Is → intensity of source
 I OR Ispec → intensity of specular reflected light
 Ks → Specular reflection coefficient

resulting intensity in the case when all ambient/diffuse/ specular reflection occurs is

I = Ia Ka + Id Kd cos θ + Is Ks cosn α

Now, cosn α= n)V.R((Qcos α = V.R).

Where,

R → Unit vector in specular reflection direction
 V→ Unit vector pointing the viewer

 i.e. |V| = 1 ; |R| = 1.

 V.R = |V||R| cos α = 1.1. cos α = cos α.
 (⇒ cos α = V.R)

Example: Calculate V.R using VLN &, where the variables have their

respective meanings N → Unit normal surface vector.
 R → Unit vector in the direction of ideal specular reflection

 L → Unit vector in the direction of pt. Light source
V → Unit vector pointing the viewer.

62

Modeling and
Rendering

 Solution: Consider the figure given below

 Figure 12

|Pm| = L cos θ = cos θ ------------------(1) (|L| = 1 (Q L is unit
vector)) ^

m

P

R L S S

αθ θ

P

V

N

Pm = |Pm| . Pm = |Pm| N (m̂P has direction of normal N)
⇒ Pm = N cos θ ----------(2)

By figure vectors S and R can be found to be
 S&&& = Pm – L ----------------------------- (3)

 R = Pm + S&&& -----------------------------(4)

Use (3) in (4) we get

R =2 Pm – L --------------------------------(5)

Use (2) in (5) we get

R = 2 (N cos θ) – L
⇒ R . V = [2 (N (cos θ) – L] . V .
 R . V = [2 (N (N . L) – L] . V (Qcos θ = N . L).

3.4 SHADING

When an object is under the exposure of light, then the rays of light are distributed
over the surface and the distribution of intensity pattern depends very much on the
shape of object. Now to represent such 3D scene on computer we need to do
rendering, i.e., transforming the 3D image into a 2D image, and because of this
rendering there is a possibility of loss of information like depth, height, etc., of an
object in the scene. So to preserve this takes different Illumination models into
consideration, for preserving the information embedded in 3D scene & let it not be
lost while transforming it in to 2D scene.

So let us study in some detail the type of shading and rendering techniques.

Polygon –Rendering Methods

Here we will consider the application of an illumination model to perform the
rendering of standard graphics objects, i.e., those formed with polygonal surfaces.
Scan line algorithm typically applies lighting model to perform rendering of polygon
surfaces, by using any one of the two ways:

1) Each polygon can be rendered with a single intensity.
2) The intensity can be obtained at each point of the surface using an interpolation

scheme.

 63

Polygon Rendering
and Ray Tracing
Methods

The result of two ways leads to 3 types of shading:

(a) Constant intensity shading OR Flat shading

In this method single intensity is calculated for each polygon surface i.e., all points
which lie on the surface of the polygon are displayed with the same intensity value.
This constant shading is useful for quickly displaying the general appearance of a
curved surface, but this shading does not convey explicit information about the curved
surface.

(b) Gourand shading OR Intensity interpolation scheme
We will discuss this scheme in successive section 3.4.1.

(c) Phong shading OR Normal vector interpolation shading.
We will discuss this scheme in successive section 3.4.2.

3.4.1 Gourand shading OR Intensity interpolation scheme

V

N6 N5

N3
N2

N4

N1

 Figure 13

Here polygon is rendered by linearly interpolating intensity values across the surface.
Intensity values for each polygon are matched with the values of adjacent polygons
along the common edges, thus eliminating the intensity discontinuities that can occur
in flat shading.

Calculations to be performed for each polygon surface rendered with Gourand
shading:

1) Determine average unit normal vector at each polygon vertex.
2) Apply illumination model to each vertex to calculate the vertex intensity.
3) Linearly interpolate the vertex intensities over the surface of the polygon.

i) To determine average unit normal vector at each polygon vertex:

At each polygon vertex (as shown by point V in the figure), the normal vector is
obtained by averaging the surface normal of all polygons sharing that vertex. Thus, for
any vertex V the unit vertex normal will be given by vN

 k

n
|

1 kN|
1 kN

vN
∑
=

∑
==

k

n

K → 1 to n are the surfaces in contact with the vertex v.

64

Modeling and
Rendering

ii) How to use illumination model to calculate vertex intensity:

For this we interpolate intensities along the polygon edges, for each scan line the
intensity at the intersection of the scan line with a polygon edge is linearly
interpolated from intensities at the edge end points, i.e., by using parametric equation
of line discussed in Unit 2 we can find intensity at point 4, i.e., I4, ; during the
evaluation of I4 intensities at point. 1 & 2 i.e., I1 & I2 are used as the extreme
intensities. So I4 is linearly interpolated from intensities at the edge end points I1 & I2
(Refer to the Figure given below).

 X

y3

y2

ys

Y

Scan Line
y1

(C) 3

(B)2

(D)4

 (A) 1 P 5(E)

 Figure 14
(iii) Linearly interpolate


















=−+=

=−+=

=−+=

−
−

=−+=

||
||)(&

||
||)(

||
||,)(

||
||)(

21

1
1214

DE
EPtwhereIItII

CB
CEtwhereIItIIsimilarly

AB
ADtwhereIItII

yy
yytwhereIItII

DEDP

CBCE

ABAD

s

where Ip Intensity of points over the surface of polygon i.e., in Gourand shading
the intensity of point - 4 is linearly interpolated from intensity at vertices 1 and 2,
similarly of point 5 too is interpolated from intensity at vertices 3 and 2. Intensity of
points P is linearly interpolated from intensity at point 4 and 5.

Advantages of Gourand Shading: It removes the intensity discontinuities associated
with the constant shading model.

Deficiencies: Linear intensity interpolation can cause bright and dark streaks called
Mach bands to appear on the surface, these mach bands can be removed by using
Phong shading or by dividing the surface into greater number of polygon faces.

Note: In Gourand Shading because of the consideration of average normal, the
intensity is uniform across the edge between two vertices.

3.4.2 Phong shading OR Normal Vector Interpolation Shading

In Gouraud shading we were doing direct interpolation of intensities but a more
accurate method for rendering a polygon surface is to interpolate normal vectors and
then apply illumination model to each surface. This accurate method was given by
Phong and it leads to Phong shading on Normal vector interpolation shading.

 65

Polygon Rendering
and Ray Tracing
Methods

Calculations involved with Phong Shading:

i) Determine average unit normal vector at each polygon vertex.
ii) Linearly interpolate the vertex normals over the surface of polygon.
iii) Apply illumination model along each scan line to calculate projected pixel

intensities for surface points.

Scan Line

Scan Line

Q P

ND

NC

NB

NA

D

C

B

A 3

1

2

N3

N1

N2

N

 Figure 15 Figure 16

Interpolation of surface normals along the polygonedge between two vertices is shown
above in Figure 15. The normal vector N for the scan line intersection point along the
edge between vertices 1 and 2 can be obtained by vertically interpolating between
edge end points normals. Then incremental methods are used to evaluate normals
between scan lines and along each individual scan line. At each pixel position along a
scan line , the illumination model is applied to determine the surface intensity at that
point

 N= [((y-y2) / (y1-y2)) N1] + [((y-y2) / (y1-y2)) N2]

In Figure 15 above, say, N is surface normal to be interpolated along polygon edge
1– 2 having vertices 1 & 2. Such that 1N & 2N are normal at the vertices. Thus, by
using the parametric equation across the edge 1 – 2 we can determine the value of the
normal N, which will be given by
 N = 1N + t)NN 12 −(

Similarly, in Figure 16 we can find N p and N q which are the normal at point (P and
Q) through which the scan line passes,

 where, t =
|AB|
|AP|)NN(tNN ABAP −+=

Now we use PN to find cos θ where , θ is the angle between Normal vector and
direction of light represented by vector L(refer to Phong model).

 cos θ = LN and cos. n α = nn]V.)L)L.N(N2[()V.R(−=
Now using cosn α, cos θ in

I = Ia Ka + Id Kd cos θ + Is Ks cosn α /* similarly we can find intensity of points

lying inside the surface */

66

Modeling and
Rendering

This Np will be used to find intensity value i.e., IP. at points Po in the object whose
projection is P, by using the intensity calculation formula which we had used for the
determination of intensities in diffused and specular reflection.

Merit

So by finding intensities at different points across the edge we find that intensity is
varying across the edge between two vertex points and is not uniform as in Gouraud
Shading, giving much better effect. So we can say that the normal vector interpolation
(Phong shading) is superior to intensity interpolation technique (Gourand Shading)
because it greatly reduces the mach bands.

Demerit: Requires lot of calculations to find intensity at a point, thus increases the
cost of shading in any implimentation.

Problem with Interpolated Shading

There are some more shading models which intermediate in complexity between
Gouraud and Phong shading, involving the liner interpolation of the dot products used
in the illumination models. As in Phong shading, the illumination model is evaluated
at each pixel, but the interpolated dot products are used to avoid the expense of
computing and normalizing any of the direction vectors. This model can produce more
satisfactory effects than Gouraud shading when used with specular-reflection
illumination models, since the specular term is calculated separately and has power-
law, rather than linear, falloff. As in Gouraud shading, however, highlights are missed
if they do not fall at a vertex, since no intensity value computed for a set of
interpolated dot products can exceed those computed for the set of dot products at
either end of the span.

There are many problems common to all these interpolated-shading models, several of
which we listed here.

Polygonal silhouette: No matter how good an approximation an interpolated
shading model offers to the actual shading of a curved surface, the silhouette edge of
the mesh is still clearly polygonal. We can improve this situation by breaking the
surface into a greater number of smaller polygons, but at a corresponding increase in
expense.

Perspective distortion. Anomalies are introduced because interpolation is
performed after perspective transformation in the 3D screen-coordinate system, rather
than in the WC system. For example, linear interpolation causes the shading
information to be incremented by a constant amount from one scan line to another
along each edge. Consider what happens when vertex 1 is more distant than vertex 2.
Perspective foreshortening means that the difference from one scan line to another in
the untransformed z value along an edge increases in the direction of the farther
coordinate. Thus, if)yy(y 21s += , then 2/)II(I 21s += , but zs will not equal

2zz(21 + . This problem can also be reduced by using a larger number of smaller
polygons. Decreasing the size of the polygons increases the number of points at which
the information to be interpolated is sampled, and therefore increases the accuracy of
the shading.

A

D

B

P

B D P

A

C

 C

(a) (b) Figure 17:

 67

Polygon Rendering
and Ray Tracing
Methods

Figure 17 (a) and 17 (b) shows Interpolated values derived for point P on the same
polygon at different orientations which differ from (a) to (b). P interpolates A, B, D in
(a) and A, B, C in (b).

Orientation dependence: The results of interpolated-shading models are not
independent of the projected polygon’s orientation. Since values are interpolated
between vertices and across horizontal scan lines, the results may differ when the
polygon is rotated (see Figure 17). This effect is particularly obvious when the
orientation changes slowly between successive frames of an animation. A similar
problem cab also occurs in visible-surface determination when the z value at each
point is interpolated from the z values assigned to each vertex. Both problems can be
solved by decomposing polygons into triangles. Alternatively, the solution is rotation-
independent, but expensive, interpolation methods that solve problem without the
need for decomposition.

Problems at shared vertices: Shading discontinuities can occur when two adjacent
polygons fail to share a vertex that lies along their common edge. Consider the three
polygons of Figure 17, in which vertex C is shared by the two polygons on the right,
but not by the large polygon on the left. The shading information determined directly
at C for the polygons at the right will typically not be the same as the information
interpolated at that point from the values at A and B for the polygon at the left. As a
result, there will be a discontinuity in the shading. The discontinuity can be eliminated
by inserting in the polygon on the left an extra vertex that shares C’s shading
information. We can preprocess a static polygonal database in order to eliminate this
problem; alternatively, if polygons will be split on the fly (e.g., using the BSP-tree
visible-surface algorithm), then extra bookkeeping can be done to introduce a new
vertex in an edge that shares an edge that is split.

C

A

 B

Figure 18: Vertex C is shared by the two polygons on the right, but not by the larger
Rectangular polygon on the left.

 Figure 19: Problems with computing vertex normal. Vertex normal are all parallel.

Unrepresentative vertex normals: Computed vertex normals may not adequately
represent the surface’s geometry. For example, if we compute vertex normals by
averaging the normals of the surfaces sharing a vertex, all of the vertex normals of
Figure 19 will be parallel to one another, resulting in little or no variation in shade if
the light source is distant. Subdividing the polygons further before vertex normal
computation will solve this problem.

Although these problems have prompted much work on rendering algorithms that
handle curved surfaces directly, polygons are sufficiently faster (and easier) to process
that they still form the core of most rendering systems.

68

Modeling and
Rendering

 Check Your Progress 4

1) If specular reflection parameter is small, say 50, than what can you say about the

nature of surface? How the nature of surface will change if n starts increasing?

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

2) Usage of linear interpolation scheme to obtain intensity at each polygon of surface
leads to which type of shading?

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

3) What are merits & demerits of Ground shading and Phong shading?

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

4) Which shading scheme is best constant shading, Ground shading or Phong
Shading? Give reasons to support your answer.

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

5) Compare Constant shading, Gourand shading and Phong Shading.

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

6) Why Phong Shading is better than Gourand shading.

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

7) How Ambient, Diffused and Specular reflection contributes to the resulting
intensity of reflected ray of light? Give mathematical expression for the same.

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

8) What do you mean by polygon rendering?

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

 69

Polygon Rendering
and Ray Tracing
Methods

3.5 RAY TRACING

Ray tracing is an exercise performed to attain the realism in a scene. In simple terms
Ray Tracing is a global illumination based rendering method used for producing
views of a virtual 3-dimensional scene on a computer. Ray tracing is closely allied to,
and is an extension of, ray-casting, a common hidden-surface removal method. It tries
to mimic actual physical effects associated with the propagation of light. Ray tracing
handles shadows, multiple specular reflections, and texture mapping in a very easy
straight-forward manner. So, the crux is “Ray tracing is a method of generating
realistic images by computer, in which the paths of individual rays of light are
followed from the viewer to their points of origin”. Any program that implements this
method of ray tracing is ray tracer. One of the prime advantages of method of Ray
tracing is, it makes use of the actual physics and mathematics behind light. Thus the
images produced can be strikingly, life-like, or “photo-realistic”.

In this section we will discuss the basic ray-tracing algorithm. It will also describe the
concept behind anti-aliasing, a method for improving the realism of an image by
smoothing the jagged edges caused by the digital nature of computer displays. This
section will not involve any discussions of the more advanced features of today’s ray-
tracers, such as motion blur, depth of field, penumbras (soft shadows), texture
mapping, or radiosity.

So to proceed the journey of ray tracing we will begin with basics like concept of
scene and describe its basic elements. With this as a foundation, it will then introduce
ray casting, and then ray tracing as an extension of ray casting. Finally, the section
will discuss the basic concepts behind anti-aliasing as a means of improving the
realism of an image, and will then conclude with an overview of how and where ray
tracing is used.

Scenes

In the context of ray tracing, a scene is a collection of objects and light sources that
will be viewed via a camera. Each of these items are arranged in what is called the
world, or world space which is an imaginary place with height, width and depth
(much like reality). For instance, let’s suppose that you wish to create an image of the
Planets and their satellites. Then our scene will consist of the planets, their respective
satellites, a light source that will act as the sun, and our camera, which is where we are
viewing this scene from. Let us discuss some basic terms (objects, light source, world,
etc.) involved with the concept of scene in some detail.

Objects could be any state of matter (solid, liquid. gas, plasma). Although ray tracers
can only support objects that can have mathematical description (such as cube,
spheres, cylinders, planes, cones, etc.), various combinations of these basic objects
help in creating more complex objects.

It is important to note that all objects have some kind of texture, which includes the
color of the object, as well as any bumpiness, shininess, or design that the designer of
the image may wish to use. However, to simplify the discussion of how ray tracing
works, we will consider color to be the only texture present on the objects that will be
described.

Light Sources are key elements in any ray traced scene, because without them, there
would be no rays to trace. Light sources are like objects which may be placed at
arbitrary locations in the scene, but in addition to the location a light source has some
intensity associated with it, which describes the brightness and color of the light. At

70

Modeling and
Rendering

any rate, lighting is considered by many to be one of the most important factors in a
ray traced image. It is the location and intensity of light source which give liveliness
to an image, A picture flooded with too much light might lose any sense of mystery
you desired it to have, whereas an image that is too dark will not show enough detail
to keep its viewers interested.

Camera represents “eye” or “viewpoint” of observer. In order to describe the basic
working of camera we can refer to the working of “pin-hole camera” as shown in the
figure below:

Light Rays
PIN HOLE

IMAGE
FILM

BOX OBJECT

Figure 20

The hole (or “aperture”) must be so small that it must prevent light from saturating
(and thus overexposing) the film. It allows only a little bit of light into the box at a
time. This kind of camera, though simple, is quite effective. It works because light
from a given position on the object may come from only one direction and strike only
one position on the film. If the hole were any larger, the image would become blurrier
as a result of the increased amount of light hitting each spot on the film

Observer
Image

Light Rays

Object Screen
Figure 21

In ray tracing, the camera is much like this, in that it determines where on the “film”
(or, in the case of ray tracing, the computer screen) the light rays hit such that a clear
realistic rendered image is available. In order to have a better understanding of the
topic let us have a discussion on the concept of ray casting also.

Ray Casting

Ray casting is a method in which the surfaces of objects visible to the camera are
found by throwing (or casting) rays of light from the viewer into the scene. The idea
behind ray casting is to shoot rays from the eye, one per pixel, and find the closest
object blocking the path of that ray – think of an image as a screen-door, with each
square in the screen being a pixel. This is then the object the eye normally sees
through that pixel. Using the material properties and the effect of the lights in the
scene, this algorithm can determine the shading of this object. The simplifying
assumption is made that if a surface faces a light, the light will reach that surface and
not be blocked or in shadow. The shading of the surface is computed using traditional
3D computer graphics shading models. Ray casting is not a synonym for ray tracing,
but can be thought of as an abridged, and significantly faster, version of the ray
tracing algorithm. Both are image order algorithms used in computer graphics to
render three dimensional scenes to two dimensional screens by following rays of light

 71

Polygon Rendering
and Ray Tracing
Methods

from the eye of the observer to a light source. Although ray tracing is similar to ray
casting, it may be better thought of as an extension of ray casting we will discuss this
in the next topic under this section.

 Eye

 Figure 22

Ray Tracing

“Ray tracing” is a method of following the light from the eye to the light source.
Whereas ray casting only concerns itself with finding the visible surfaces of objects,
ray tracing takes that a few steps further and actually tries to determine what each
visible surface looks like. Although it will cost your processor time spent in
calculations you can understand the level of calculations involved in ray tracing by
considering this example,

Let’s say we are rendering (that is, ray tracing) a scene at a resolution of 320 pixels
wide by 240 pixels high, for a total of 76,800 pixels. Let it be of low complexity, with
only 20 objects. That means, over the course of creating this picture, the ray tracer
will have done 20 intersection tests for each of those 76,800 pixels, for a total of
1,536,000 intersection tests! In fact, most ray tracers spend most of their time
calculating these intersections of rays with objects, anywhere from 75 to 95 % of a ray
tracer’s time is spent with such calculations. Apart from such hectic calculations, there
is the good news that there are ways to decrease the number of intersection tests per
ray, as well as increase the speed of each intersection test. In addition to this the bad
news is that ray tracing complicates things much more than simply ray casting does.

Ray tracing allows you to create several kinds of effects that are very difficult or even
impossible to do with other methods. These effects include three items common to
every ray tracer: reflection, transparency, and shadows. In the following paragraphs,
we will discuss how these effects fit naturally into Ray tracing.

3.5.1 Basic Ray Tracing Algorithm

The Hidden-surface removal is the most complete and most versatile method for
display of objects in a realistic fashion. The concept is simply to take one ray at a
time, emanating from the viewer’s eye (in perspective projection) or from the bundle
of parallel lines of sight (in parallel projection) and reaching out to each and every
pixel in the viewport, using the laws of optics.

Generally, to avoid wastage of effort by rays starting from sources of light going out
of the viewport, the reverse procedure of starting with ray from the viewpoint and
traveling to each pixel in the viewport is adopted.

If the ray encounters one or more objects, the algorithm filters out all but the nearest
object, or when there is an overlap or a hole, the nearest visible portion of all the
objects along the line of sight.

72

Modeling and
Rendering

Depending on the nature (attributes) of the surface specified by the user, the following
effects are implemented, according to rules of optics.

a) Reflection (according to the angle of incidence and reflectivity of the surface).

b) Refraction (according to the angle of incidence and refraction index).

c) Display of renderings (texture or pattern as specified), or shadows (on the next

nearest object or background) involving transparency or opacity, as the case may
be.

Figure illustrates some of the general principles of ray tracing.

Transparency

Reflection &
Refraction

T

P

A

ED

O

C
R B

Figure 23

A ray starting at O hits the transparent glass plate P at an angle at A. It gets refracted
in the plate (indicated by the kink within the plate thickness). The exiting ray happens
to hit the edge of the triangle T, and casts a shadow on the opaque rectangular plate R
at the point C. A part of the ray incident on the plate P gets reflected at A and the
reflected ray hits the elliptical object E at the point D. If P is a green glass plate, the
exiting ray AC will be assigned the appropriate green colour. If R or E has a textured
surface, the corresponding point C or D will be given the attributes of the surface
rendering.

If O is a point source of light, the ray OC will locate the shadow of the point B on the
edge of the triangle T at the point C on the rectangle R.

Different locations of light sources may be combined with differing view positions to
improve the realism of the scene. The method is general also in the sense that it can
apply to curved surfaces as well as to solids made of flat polygonal segments. Because
of its versatile and broad applicability, it is a “brute force” method, involving massive
computer resources and tremendous computer effort.

Algorithm

Often, the basic ray tracing algorithm is called a “recursive” (obtaining a result in
which a given process repeats itself an arbitrary number of times) algorithm. Infinite
recursion is recursion that never ends. The ray tracing algorithm, too, is recursive, but
it is finitely recursive. This is important, because otherwise you would start an image
rendering and it would never finish!

 73

Polygon Rendering
and Ray Tracing
Methods

The algorithm begins, as in ray casting, by shooting a ray from the eye and through
the screen, determining all the objects that intersect the ray, and finding the nearest of
those intersections. It then recurses (or repeats itself) by shooting more rays from the
point of intersection to see what objects are reflected at that point, what objects may
be seen through the object at that point, which light sources are directly visible from
that point, and so on. These additional rays are often called secondary rays to
differentiate them from the original, primary ray. As an analysis of the above
discussion we can say that we pay for the increased features of ray tracing by a
dramatic increase in time spent with calculations of point of intersections with both
the primary rays (as in ray casting) and each secondary and shadow ray. Thus
achieving good picture quality, is not an easy task, and it only gets more expensive as
you try to achieve more realism in your image. One more concept known as Anti-
aliasing is yet to be discussed, which plays a dominant role in achieving the goal of
realism.

Anti-aliasing

Anti-aliasing is a method for improving the realism of an image by removing the
jagged edges from it. These jagged edges, or “jaggies”, appear because a computer
monitor has square pixels, and these square pixels are inadequate for displaying lines
or curves that are not parallel to the pixels and other reason is low sampling rate of the
image information, which in turn leads to these jaggies (quite similar to star casing
discussed in previous blocks under DDA algorithm). For better understanding, take
the following image of darkened circle:

Figure 24

If you put a grid over the image and only color those squares
that are entirely within the circle, you will get something like
next figure. This blockiness is called “aliasing,” and is exactly
what happens when you try to display a circle on a computer
screen. The problem may be simplified by using a finer grid.

The problem may be simplified by using a finer grid i.e.,
by increasing the sampling rate of information related to
an image.

It is not possible to completely eliminate aliasing because computers are digital
(discrete) in nature. However, it is possible to minimize aliasing, the solutions used by
ray tracers today involve treating each pixel as a finite square area (which, in fact,
they are), rather than as a mere point on the screen. Instead the pixel should not be
considered as a point or area but should be considered as a sample of image
information (higher the sampling is lesser the aliasing is). Now let us discuss how
appropriately the sampling can be done - Rays are fired into the scene through the
centers of the pixels, and the intensities of adjacent rays are compared. If they differ
by some pre-determined amount, more rays are fired into the surfaces of the pixels.
The intensities of all the rays shot into a given pixel are then averaged to find a color
that better fits what would be expected at that point.

Note: Do not treat a pixel as a square area, as this does not produce correct filtering
behaviour, in fact a pixel is not a point, but it is a sample of information to be
displayed.

Anti-aliasing, then, helps eliminate jagged edges and to make an image seem more
realistic.Continuing the above example, the anti-aliased circle might, then, be
represented

	UNIT 1 CURVES AND SURFACES
	StructurePage Nos.
	1.1Introduction 5
	
	
	Figure 3
	
	
	Solution:

	(Check Your Progress 1

	Plane is a polygonal surface, which bisects its environment into two halves. One is referred to as forward and the other as backward half of any plane. Now the question is, which half is forward and which backward, because both are relative terms. So to
	
	
	
	
	
	
	(Check Your Progress 2

	1.4.1 Bezier Curves

	1.4.2 Properties of Bezier Curves
	
	
	
	
	
	
	(Check Your Progress 3
	1.5SURFACE OF REVOLUTION

	1.6SUMMARY

	Check Your Progress 1
	
	
	
	Check Your Progress 2
	Check Your Progress 3

