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1.0 INTRODUCTION 
  

In the previous Block, we have presented approaches for the generation of lines and 
polygonal regions. We know that once the objects are created, the different 
applications may require variations in these. For example, suppose we have created 
the scene of a room. As we move along the room we find the object’s position comes 
closer to us, it appears bigger even as its orientation changes. Thus we need to alter or 
manipulate these objects. Essentially this process is carried out by means of 
transformations. Transformation is a process of changing the position of the object or 
maybe any combination of these. 
 
The objects are referenced by their coordinates. Changes in orientation, size and shape 
are accomplished with geometric transformations that allow us to calculate the new 
coordinates. The basic geometric transformations are translation, rotation, scaling and 
shearing. The other transformations that are often applied to objects include reflection. 
 
In this Block, we will present transformations to manipulate these geometric 2-D 
objects through Translation, and Rotation on the screen. We may like to modify their 
shapes either by magnifying or reducing their sizes by means of Scaling 
transformation. We can also find similar but new shapes by taking mirror reflection 
with respect to a chosen axis of references. Finally, we extend the 2-D transformations 
to 3-D cases. 
                                                                                               

1.1      OBJECTIVES 
     
After going through this unit, you should be able to: 
• describe the basic transformations for 2-D translation, rotation, scaling and 

shearing; 
• discuss the role of composite transformations; 
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• describe composite transformations for  Rotation about a point and reflection 
about a line; 

• define and explain the use of  homogeneous coordinate systems for the 
transformations, and 

• extend the 2-D transformations discussed in the unit to 3-D transformations. 
 
                                                                                               

1.2      BASIC TRANSFORMATIONS 
    
Consider the xy-coordinate system on a plane. An object (say Obj) in a plane can be 
considered as a set of points. Every object point P has coordinates (x,y), so the object 
is the sum total of all its coordinate points (see Figure 1). Let the object be moved to a 
new position. All the coordinate points P’(x’,y’) of a new object Obj’  can be obtained 
from the original points P(x,y) by the application of a geometric transformation. 
 
 
 
 
                                             
 
 
 
 
 
 
                                        

y 

O 

Obj 

. P (x, y) 

x 
                               
 
 
                                                             Figure 1 
                                                   
1.2.1 Translation 
 
Translation is the process of changing the position of an object. Let an object point 
P(x,y)=xI+yJ be moved to P’(x’,y’) by the given translation vector V= txI + tyJ, where   
tx and ty is the translation factor in x and y directions, such that  
 
P’=P+V.                                  ----------------(1) 
In component form, we have  
         
      Tv=         x’=x+ tx   and  
                      y’=y+ty               ----------------(2)  
 
 

Obj         .P
O 

Obj’ 
.P

 
 
 
 
 
 
 
 x 
 
   
 
                                                     Figure 2 
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As shown in Figure 2, P’ is the new location of P, after moving tx along x-axis and ty 
along y-axis. It is not possible to develop a relation of the form. 
 
P’=P.Tv                                    ---------------(3) 
 
Where Tv is the transformation for translation in matrix form.  
 
That is, we cannot represent the translation transformation in (2x2) matrix form (2-D 
Euclidean system). 
 
Any transformation operation can be represented as a (2x2) matrix form, except 
translation, i.e., translation transformation cannot be expressed as a (2x2) matrix form 
(2-D Euclidean system). But by using Homogeneous coordinate system (HCS), we 
can represent translation transformation in matrix form. The HCS and advantages of 
using HCS is discussed, in detail, in section 1.4. 
 
Relation between 2-D Euclidean (Cartesian) system and HCS  
   
Let P(x,y) be any point in 2-D Euclidean system. In Homogeneous Coordinate system, 
we add a third coordinate to the point. Instead of (x,y), each point is represented by a 
triple (x,y,H) such that H≠0; with the condition that (x1,y1,H1)=(x2,y2,H2)  ↔ x1/H1 
= x2/H2 ; y1/H1 = y2/H2. In two dimensions the value of H is usually kept at 1 for 
simplicity. (If we take H=0 here, then this represents point at infinity, i.e, generation 
of horizons).  
 
The following table shows a relationship between 2-D Euclidean (Cartesian 
coordinate) system and HCS. 
 
2-D  Euclidian System                     Homogeneous Coordinate System (HCS)     
Any point (x,y)                                         (x,y,1) 
                                                                                                                            
                                                                 If (x,y,H) be any point in HCS(such that 
H≠0);  
                                                                 then (x,y,H)=(x/H,y/H,1), i.e. 
            (x/H,y/H)                                    (x,y,H) 
                                                                                                            
 
For translation transformation, any point (x,y) (x+tx,y+ty) in 2-D Euclidian system. 
Using HCS, this translation transformation can be represented as  
(x,y,1) → (x+tx,y+ty,1). In two dimensions the value of  H is usually kept at 1 for 
simplicity. Now, we are able to represent this translation transformation in matrix 
form as: 
                                 1    0    0  
  (x’,y’,1)=(x,y,1)     0   1     0  
                                 tx   ty   1 
 
P’h=Ph.Tv                                     ----------------(4) 
 
Where P’h and Ph  represents object points in Homogeneous Coordinates and Tv is 
called homogeneous transformation matrix for translation. Thus, P’h, the new 
coordinates of a transformed object, can be found by multiplying previous object 
coordinate matrix, Ph, with the transformation matrix for translation Tv.  
 
The advantage of introducing the matrix form of translation is that it simplifies the 
operations on complex objects i.e., we can now build complex transformations by 
multiplying the basic matrix transformations. This process is called concatenation of 
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


matrices and the resulting matrix is often referred as the composite transformation 
matrix.  
 
We can represent the basic transformations such as rotation, scaling shearing, etc., as 
3x3 homogeneous coordinate matrices to make matrix multiplication compatibility 
with the matrix of translation. This is accomplished by augmenting the 2x2 matrix 

 with a third column            and a third row (0,0,1). That is          
a b
c d


 
                                                                                                                   

0 
0 
1 

      a   b   0                                                                                                                   
      c   d   0                                                                                                            
      0   0   1                                                                                                                                      
 
Thus, the new coordinates of a transformed object can be found by multiplying 
previous object coordinate matrix with the required transformation matrix. That is 
 
               New Object                     Previous object             Transformation 
              Coordinate            =            Coordinate          .             matrix 
                  matrix                                   matrix                                                     
 
 
Example1: Translate a square ABCD with the coordinates 
A(0,0),B(5,0),C(5,5),D(0,5) by 2 units in x-direction and 3 units in y-direction. 
 
Solution: We can represent the given square, in matrix form, using homogeneous 
coordinates of vertices  
                 as:             
                         A     x1   y1  1                      0    0     1 
                         B    x2   y2   1                      5    0     1 
                         C    x3   y3   1         =           5     5    1 
             D    x4   y4   1      0     5    1 
 
The translation factors are, tx=2, ty=3 
 
The transformation matrix for translation : 
                                                                             1    0    0             1   0   0 
                                                                   Tv=    0   1     0     =      0   1   0 
                                                                             tx   ty   1             2   3   1 
 
New object point coordinates are: 
                                         [A’B’C’D’] = [ABCD].Tv 
                                    
                          A’   x’1   y’1   1              0    0   1           1   0   0 
                          B’   x’2     y’2   1     =      5    0   1   .  .    0   1   0 
                          C’   x’3   y’3   1              5    5   1           2   3   1 
                          D’   x’4   y’4   1              0    5   1                           
 
                                                                    2     3    1 
                                                             =     7     3    1 
                                                                    7     8    1 
                                                                     2    8    1 
 
Thus, A’(x’1,y’1)=(2,3) 
         B’(x’2,y’2)=(7,3) 
         C’(x’3,y’3)=(7,8) and   D’(x’4,y’4)=(2,8) 
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)   A                                 
(0,0) 

 D    (0,5)                                 C (5,5) 

B (7,3) A (2,3) 

The graphical representation is given below: 
 D (2,8) C (7,8) 
                                                                                                 
 

 
                                                                                                  
 

a)  Square before Translati
 
1.2.2   Rotation 
 
In 2-D rotation, an ob
is assumed to be posit
rotation, case1- rotati
If, the rotation is mad
composite transforma
to specify both the an
to be made. Here, we 
case2.  
 
Before starting case-1
coordinate system an
 
Relation between pola
 
A frequently used non
Figure A shows a pola
coordinate position is
coordinate origin and 
Figure 2A). Positive a
measured in degrees. 
treated as 3600. A rela
Figure 2B.  
                                      
                                
                                      

                                      
                                      
 
 
  Figure 2A: A polar coor

 
Consider a right angle
functions, we transfor
 
x=r.cosθ 
y=r.sinθ 
 
The inverse transform
 
r=√(x2+y2) and θ=tan-

 
 

B (5,0
9

                          

on                    b) Square after Translation 

ject is rotated by an angle θ with respect to the origin. This angle 
ive for anticlockwise rotation. There are two cases for 2-D 
on about the origin and case2 rotation about an arbitrary point. 
e about an arbitrary point, a set of basic transformation, i.e., 
tion is required. For 3-D rotation involving 3-D objects, we need 
gle of rotation and the axis of rotation, about which rotation has 
will consider case1 and in the next section we will consider 

 or case-2 you must know the relationship between polar 
d Cartesian system:  

r coordinate system and Cartesian system  

-cartesian system is Polar coordinate system. The following 
r coordinate reference frame. In polar coordinate system a 

 specified by r and θ, where  r is a radial distance from the 
θ is an angular displacements from the horizontal (see  
ngular displacements are counter clockwise. Angle θ is 
One complete counter-clockwise revolution about the origin is 
tion between Cartesian  and polar coordinate system is shown in 

                                                              y-axis 
             r 
                                                                  r           P(x,y) 

                  θ                              θ              x-axis 
                                                       O 

dinate reference-frame      Figure 2B: Relation between Polar and 
Cartesian  coordinates 

 triangle in Figure B. Using the definition of trigonometric 
m polar coordinates to Cartesian coordinates as: 

ation from Cartesian to Polar coordinates is: 

1(y/x) 
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Case 1:  Rotation about the origin 
 
Given a 2-D point P(x,y), which we want to rotate, with respect to the origin O. The 
vector OP has a length ‘r’ and making a positive (anticlockwise) angle φ with respect 
to  x-axis. 
 
Let P’(x’y’) be the result of rotation of point P by an angle θ about the origin, which is 
shown in Figure 3.  
                 
 
 
 
 
 
 
 
                                                 

P (x, y) 

y 

θ
φ

x 
O 

P’ (x′, y′) 

 
 

Figure 3 
P(x,y) = P(r.cosφ,r.sinφ) 
P’(x’,y’)=P[r.cos(φ+θ),rsin(φ+θ)] 
 
The coordinates of P’ are: 
x’=r.cos(θ+φ)=r(cosθcosφ-sinθsinφ) 
                      =x.cosθ-y.sinθ      (where x=rcosφ and y=rsinφ) 
similarly; 
y’= rsin(θ+φ)=r(sinθcosφ + cosθ.sinφ) 
                     =xsinθ+ycosθ      
 
Thus, 
             
Rθ =     x’= x.cosθ-y.sinθ 
            y’= xsinθ+ycosθ                           
             
 
Thus, we have obtained the new coordinate of point P after the rotation. In matrix 
form, the transformation relation between P’ and P is given by: 
                             
                                    cosθ     sinθ  
            (x’y’)=(x,y)                                                                 
                                   -sinθ    cosθ  
 
that is P’=P.Rθ                                                            ---------(5) 
 
where P’and P represent object points in 2-D Euclidean system and Rθ is 
transformation matrix for anti-clockwise Rotation.   
 
In terms of HCS, equation (5) becomes 
                             
                               cosθ   sinθ     0 

    -sinθ  cosθ     0                             ---------(6)     
                                 0        0        1 

(x', y’,1) = (x, y, 1)  

= Rθ 

 
That is  P’h=Ph.Rθ ,                                                      ---------(7) 
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Where P’h and Ph  represents object points, after and before required transformation, in 
Homogeneous Coordinates and Rθ is called homogeneous transformation matrix for 
anticlockwise Rotation. Thus, P’h, the new coordinates of a transformed object, can 
be found by multiplying previous object coordinate matrix, Ph, with the transformation 
matrix for Rotation Rθ.  
 
Note that for clockwise rotation we have to put θ = – θ, thus the rotation matrix Rθ , in 
HCS, becomes 
 
             cos(– θ)    sin(–θ)     0           cosθ   –sinθ    0 
   R-θ=   –sin(–θ)   cos(–θ)    0      =    sinθ    cosθ    0                                                                       
                 0               0          1             0         0         1 
                                 
 
Example 2: Perform a 450 rotation of a triangle A(0,0),B(1,1),C(5,2) about the origin. 
 
Solution: We can represent the given triangle, in matrix form, using homogeneous 
coordinates of the vertices:  
                                                            A  0   0  1 
                                             [ABC]=  B  1   1  1 
                                                            C  5   2  1 
 
                                                               
                                                              cos450     sin450    0         √2/2     √2/2   0                
The matrix of rotation is:  Rθ = R45

0
 =   – sin450   cos450    0     =  – √2/2  √2/2   0                               

                                                                 0          0           1             0         0      1 
                                                                 
So the new coordinates A’B’C’ of the rotated triangle ABC can be found as: 
 

 [A’B’C’]=[ABC]. R45° =   
0 0 1
1 1 1
5 2 1

 
 
 
  

2 / 2 2 / 2 0

2 / 2 2 / 2 0
0 0

 
 
− 
 
  

1
  = 

0 0

0 2

3 2 / 2 7 2 / 2 1

1

1

 
 
 
 
 

                                                           

                                                                                                 
Thus A’=(0,0), B’=(0,√2), C’=(3√2/2,7√2/2) 
 
The following Figure (a) shows the original, triangle [ABC] and Figure (b) shows 
triangle after the rotation. 
 
 
 y 

 
 
 
 
 
 
 
 

            
                                    
                                  

O 

C 

A 

B 

x 

                                                   Figure (a) 
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y  

 
C’  

 
 
 
  

B’  
 A’ 
 x 

O 
 

Figure (b) 
 

 Check Your Progress 1 
 
1) What are the basic advantages of using Homogeneous coordinates system.  

………………………………………………………………………………………

………………………………………………………………………………………

……………………………………………………………………………………… 

2) A square consists of vertices A(0,0),B(0,1),C(1,1),D(1,0). After the translation C 
is found to be at the new location (6,7). Determine the new location of other 
vertices. 

………………………………………………………………………………………

………………………………………………………………………………………

……………………………………………………………………………………… 

3) A point P(3,3) makes a rotating of 450 about the origin and then translating in the 
direction of vector v=5I+6J. Find the new location of P. 

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

……………………………………………………………………………………… 

4) Find the relationship between the rotations Rθ, R-θ, and Rθ
-1 . 

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

……………………………………………………………………………………… 

 
1.2.3 Scaling 

   
Scaling is the process of expanding or compressing the dimensions (i.e., size) of an 
object. An important application of scaling is in the development of viewing 
transformation, which is a mapping from a window used to clip the scene to a view 
port for displaying the clipped scene on the screen. 
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Let P(x,y) be any point of a given object and sx and sy be scaling factors in x and y 
directions respectively, then the coordinate of the scaled object can be obtained as: 
 
       x’=x.sx          
       y’=y.sy              --------(8) 
        
If the scale factor is 0<s<1, then it reduces the size of an object and if  it is more then 
1, it magnifies the size of the object along an axis. 
 
For example, assume sx >1. 
 
i) Consider (x,y) (2.x,y) i.e., Magnification in x-direction with scale factor sx =2. 

               
                                   (3,3)                                                                                                               (6,3) 
  

                    (2,2)                 (4,2)                       sx =2                       (4,2) 
 
 
                        (2,1)                              (4,1)                                                              (4,1)                                          
 
                    
           
          Figure a): Object before Scaling                            Figure b): Object after Scaling with sx =2 
 
ii) Similarly, assume sy >1 and consider (x,y) (x,2.y), i.e., Magnification in y-

direction with scale factor sy =2.    
                                                              

                                       (3,3)                                                                 (3,6) 
                                                                                                      

 
                  (2,2)                 (4,2)                       sy=2                              

     (2,4)                             (4,4) 
 
                     (2,1)                              (4,1)    
 
 
                                                                                                                                      (2,2)                              (4,2) 
                                                      

 
 

iii) Consider (x,y) (x.sx,y) where 0< sx = y2 <1 i.e., Compression in x-direction with 
scale factor sx=1/2. 

                                                                                                            
                                      (3,3)                                                                              (1.5,3)                                                        
  

                    (2,2)                      (4,2)                sy =2                       
 
 
                        (2,1)                                 (4,1)                                               (1,2)                    (2,1) 
 
                    
 
       Figure a): Object before Scaling                               Figure b): Object after Scaling with Sx=1/2 
 
Thus, the general scaling is (x,y)  (x.sx,y.sy) i.e., magnifying or compression in both 
x and y directions depending on Scale factors sx and sy. We can represent this in 
matrix form (2-D Euclidean  system) as: 
 
 
                                                            sx     0 
                                  (x’,y’)=  (x,y)    0     sy                                  ----(9) 

(8,1) 

Figure b): Object after Scaling with Sy=2 
 

Figure a): Object before Scaling 
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0

In terms of HCS, equation (9) becomes: 
                                                             

                              (x’,y’,1)=(x,y,1)   
0 0

0
0 0 1

x

y

s
s

 
 
 
  

                       ----(10) 

that is P’h=Ph.ssx,sy                                                                                ----(11) 
 
Where Ph  and P’h  represents object points, before and after required transformation, 
in Homogeneous Coordinates and ssx,sy is called transformation matrix for general 
scaling with scaling factor sx and sy .                                                                                  
 
Thus, we have seen any positive value can be assigned to scale factors sx and sy. We 
have the following three cases for scaling: 
 
Case 1:  If the values of sx and sy are less then 1, then the size of the object will be 
reduced. 
 
Case2:  If both sx and sy are greater then 1, then the size of the object is enlarged. 
 
Case3:  If we have the same scaling factor (i.e. sx=sx=S), then there will be uniform 
scaling (either enlargement or compression depending on the value of Sx and Sy) in 
both x and y directions. 
 
Example3:  Find the new coordinates of a triangle A(0,0),B(1,1),C(5,2) after it has 

been (a) magnified to twice its size and (b) reduced to half its size. 
 
Solution:  Magnification and reduction can be achieved by a uniform scaling of s 

units in both the x and y  directions. If, s>1, the scaling produces 
magnification. If, s<1, the result is a reduction. The transformation can be 
written as: (x,y,1) (s.x,s.y,1). In matrix form this becomes 

 
                                       s    0   0 
                        (x,y,1).   0   s    0    = (s.x,s.y,1) 
                                       0   0   1 
 
We can represent the given triangle, shown in Figure (a),  in matrix form, using 
homogeneous coordinates of the vertices as :  
 
 
                                                            A  0   0  1 
                                                            B  1   1  1 
                                                            C  5   2  1            
 
 
 
 
 
 
                                                                                                 

5 

4 

3 

2 

1 

       1           2           3          4          5          6 

B

O 

C 

A 

y 

 
 

x  
 
 

Figure a: Object before scaling 
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(a) choosing s=2                                                     
                                                                          2    0    0 

              The matrix of scaling is:Ssx,sy = S2,2 =      0    2    0 
                                                                                 0    0    1                                                                
 
So the new coordinates A’B’C’ of the scaled triangle ABC can be found as: 
 
 
                                               0   0   1         2   0    0            0    0  1 
   [A’B’C’]=[ABC]. R2,2 =     1   1   1         0   2    0     =    2    2   1   
                                               5   2   1         0   0    1           10   4   1 
 
 
Thus, A’=(0,0), B’=(2,2), C’= (10, 4) 
 
(b) Similarly, here, s=1/2 and the new coordinates are A’’=(0,0), B’’=(1/2,1/2), 

C’’=(5/2,1). The following figure (b)  shows the effect of scaling with sx=sy =2 
and (c) with sx=sy =s=1/2. 

 y 
 
 
 
 
 
 
 
 

         
 
 
 

1     2    3    4    5     6    7      8     9     10 
O 

C 

A 

4 
3 
2 
1 

B 

y 

1 2 3 4 5

C 

A 
O 

4 

3 

2 

1 

B 

x x 

Figure b: Object after scaling with Sx = Sy = 2 Figure c: Object after scaling with Sx = Sy = 1/2 
                                               
 
1.2.4 Shearing 
 
Shearing transformations are used for modifying the shapes of 2-D or 3-D objects. 
The effect of a shear transformation looks like “pushing” a geometric object in a 
direction that is parallel to a coordinate plane (3D) or a coordinate axis (2D). How far 
a direction is pushed is determined by its shearing factor. 
 
One familiar example of shear is that observed when the top of a book is moved 
relative to the bottom which is fixed on the table. 
 
In case of 2-D shearing, we have two types namely x-shear and y-shear. 
 
In x-shear, one can push in the x-direction, positive or negative, and keep the y-
direction unchanged, while in y-shear, one can push in the y-direction and keep the x-
direction fixed.  
 
x-shear about the origin 
 
Let an object point P(x,y) be moved to P’(x’,y’) in the x-direction, by the given scale 
parameter ‘a’,i.e., P’(x’y’) be the result of x-shear of point P(x,y) by scale factor a 
about the origin, which is shown in Figure 4.   
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P(x,y) 

ay 

P’ (x’,y’) 

x 
x 

y ay 
P(x,y) 

O O x 

 
Figure 4  

Thus, the points P(x,y) and P’(x’,y’) have the following relationship: 
 
x' = x + ay 
y' = y                 = Shx(a)                                                    ------(11a) 
 
where ‘a’ is a constant (known as shear parameter) that measures the degree of 
shearing.  If a is negative then the shearing is in the opposite direction. 
 
Note that P(0,H) is taken into P'(aH,H).  It follows that the shearing angle A (the angle 
through which the vertical edge was sheared) is given by: 
 
tan(A) = aH/H = a. 
 
So the parameter a is just the tan of the shearing angle. In matrix form (2-D Euclidean 
system), we have 
 
                                      1    0    
              (x’,y’)=(x,y)    a    1                                    -------(12) 
 
In terms of Homogeneous Coordinates, equation (12) becomes 
 
                                       1    0   0    
         (x’,y’,1)=(x,y,1).   a    1   0                               -------(13) 
                                       0    0   1 
 
That is, P’h = Ph Shx(a)                                              --------(14) 
 
Where Ph  and P’h  represents object points, before and after required transformation, 
in Homogeneous Coordinates and Shx(a) is called homogeneous transformation matrix 
for x-shear with scale parameter ‘a’ in the x-direction. 
 
y-shear about the origin    
 
Let an object point P(x,y) be moved to P’(x’,y’) in the x-direction, by the given scale 
parameter ‘b’. i.e., P’(x’y’) be the result of y-shear of point P(x,y) by scale factor ‘b’ 
about the origin, which is shown in Figure 5(a). 
 

  

P’ (x’,y’) Y Y 

P (x,y) b.x 

P(x, y) 

X 
X 

 
     Figure 5 (a) 
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Thus, the points P(x,y) and P’(x’,y’) have the following relationship : 
 
x' = x  
y' = y+bx      = Shy(b)                                           ----------(15) 
 
where ‘b’ is a constant (known as shear parameter) that measures the degree of 
shearing. In matrix form, we have 
 
                                      1    b    
              (x’,y’)=(x,y)    0    1                               ----------(16) 
 
In terms of Homogeneous Coordinates, equation (16) becomes 
 
                                            1    b   0    
              (x’,y’,1)=(x,y,1)    0    1   0                     ---------(17) 
                                            0    0   1 
    
That is, P’h = Ph.Shy(b)                                          ---------(18) 
 
Where Ph  and P’h  represents object points, before and after required transformation, 
in Homogeneous Coordinates and Shy (b) is called homogeneous transformation 
matrix for y-shear with scale factor ‘b’ in the y-direction. 
 
xy-shear about the origin 
 
Let an object point P(x,y) be moved to P’(x’,y’) as a result of shear transformation in 
both x- and y-directions with shearing factors a and b, respectively, as shown in 
Figure 5(b). 
 
 
  
 
 
 
 
                                    Figure 5 (b) 
 
The points P(x,y) and P’(x’,y’) have the following relationship : 
 
x' = x +ay 
y' = y+bx        = Shxy(a,b)                                     ----------(19) 
 
where ′ay′ and ′bx′  are shear factors in x and y directions, respectively. The xy-shear 
is also called simultaneous shearing or shearing for short. 
 
In matrix form, we have, 
 
                                      1    b    
              (x’,y’)=(x,y)    a    1                                ---------(20) 
 
In terms of Homogeneous Coordinates, we have 
 
                                             1    b   0    
              (x’,y’,1)=(x,y,1)     a    1   0                    ---------(21) 
                                             0    0   1 

O 

Y 

b.x 

P (x, y) 
a.y 

b.x a.y 
P’ (x’, y’) 

X 

 
That is, P’h = Ph.Shxy(a,b)                                     ----------(22) 
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Where Ph  and P’h  represent object points, before and after required transformation, in 
Homogeneous Coordinates and Shxy(a,b) is called homogeneous transformation matrix 
for xy-shear in both x- and y-directions with shearing factors a and b, respectively, 
 
Special case: when we put b=0 in equation (21), we have shearing in x-direction, and 
when a=0, we have Shearing in the y-direction, respectively.        
 
Example 4: A square ABCD is given with vertices A(0,0),B(1,0),C(1,1), and D(0,1). 
Illustrate the effect of a) x-shear b) y-shear c) xy-shear  on the given square, when a=2 
and b=3. 
 
Solution: We can represent the given square ABCD, in matrix form, using 
homogeneous coordinates of vertices as: 
     
                                                  A     0    0     1 
                                                  B     1    0     1 
                                                  C     1    1     1 
              D    0     1     1 
 
a) The matrix of x-shear is: 
 
                                             1   0   0             1   0   0 
                             Shx(a) =   a   1   0      =     2   1   0 
                                             0   0   1             0   0   1 
 
  So the new coordinates A’B’C’D’ of the x-sheared object ABCD can be found as: 
   [A’B’C’D’]=[ABCD]. Shx(a) 
 
                                         A      0    0    1        1  0  0          0    0   1 
               [A’B’C’D’]=     B     1     0    1    .   2  1  0    =    1    0   1 
                                         C     1     1    1        0  0  1          3    1   1 
                                         D     0     1    1                            2    1   1 
 
Thus, A’=(0,0), B’=(1,0), C’=(3,1) and D’=(2,1). 
 
b) Similarly the effect of shearing in the y direction can be found as: 
    [A’B’C’D’]=[ABCD].Shy(b) 
 
                                         A      0    0    1        1   3   0                 0    0   1 
               [A’B’C’D’]=     B     1     0    1    .   0   1   0    =           1    3   1 
                                         C     1     1    1        0   0   1                  1    4   1 
                                         D     0     1    1                                      0    1   1     
 
Thus, A’=(0,0), B’=(1,3), C’=(1,4) and D’=(0,1). 
 
c) Finally the effect of shearing in both directions can be found as: 
    [A’B’C’D’]=[ABCD]. Shxy(a,b) 
 
                                                   A     0    0    1        1  3  0          0    0   1 
               [A’B’C’D’]=               B     1     0   1    .   2  1  0    =    1    3   1 
                                                   C     1     1   1        0  0  1          3    4   1 
                                                  D     0     1   1                            2    1   1     
  
 
Thus, A’=(0,0), B’=(1,3), C’=(3,4) and D’=(2,1). 
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Figure (a) shows the original square, figure (b)-(d) shows shearing in the x, y and 
both directions respectively. 
 
 
  
 
 
 
 
 
 
 
  Figure (a)                                                                              Figure (b) 
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C’ (3,4) 
D’ (1, 3) 

O 

Y 

A’ 
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X 

B’ (1, 3) 

C’ (1, 4) 

O 

Y 

A 

D’ 

Figure (c)                                                                              Figure (d) 
 
Example 5: What is the use of Inverse transformation? Give the Inverse 
transformation for translation, rotation, reflection, scaling, and shearing. 
 
Solution: We have seen the basic matrix transformations for translation, rotation, 
reflection, scaling and shearing with respect to the origin of the coordinate system. By 
multiplying these basic matrix transformations, we can build complex 
transformations, such as rotation about an arbitrary point, mirror reflection about a 
line etc. This process is called concatenation of matrices and the resulting matrix is 
often referred to as the composite transformation matrix.  Inverse transformations play 
an important role when you are dealing with composite transformation. They come to 
the rescue of basic transformations by making them applicable during the construction 
of composite transformation. You can observed that the Inverse transformations for 
translation, rotation, reflection, scaling and shearing have the following relations, and 
v, θ, a, b, sx, sy, sz are all parameter involved in the transformations. 
 

   1)  Tv 
–1 =T-v      

2)  Rθ 
–1 = R-θ  

3)  (i)  Shx
-1(a) =Shx(-a) 

        (ii)  Shy
-1(b) =Shx(-b) 

       (iii) Shxy
-1(a,b) =Shx(-a,-b) 

   4) S-1
sx,sy,sz =S1/sx,1/sy,1/sz  

5) The transformation for mirror reflection about principal axes do not change after  
inversion. 

       (i) Mx-1 =M-x= Mx 
(ii) My-1 =M-y= My 

      (iii) Mz-1 =M-z= Mz ,  
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6) The transformation for rotations made about x,y,z axes have the following 
inverse: 

  (i)  R-1
x,θ 

 = Rx,-θ = RT
x,θ 

     (ii)  R-1
y,θ 

 = Ry,-θ = RT
y,θ 

 (iii) R-1
z,θ 

 = Rz,-θ = RT
z,θ 

 
 Check Your Progress 2 

 
1) Differentiate between the Scaling and Shearing transformation. 

………………………………………………………………………………………

………………………………………………………………………………………

……………………………………………………………………………………… 

2)  Show that Sa,b .Sc,d = Sc,d .Sa,b = Sac,bd 

………………………………………………………………………………………

………………………………………………………………………………………

……………………………………………………………………………………… 

3) Find the 3x3 homogeneous co-ordinate transformation matrix for each of the 
following: 
a) Shift an image to the right by 3 units. 
b) Shift the image up by 2 units and down 1 units. 
c) Move the image down 2/3 units and left 4 units.    

………………………………………………………………………………………

………………………………………………………………………………………

……………………………………………………………………………………… 

4)  Find the condition under which we have   Ssx,sy .Rθ= Rθ. Ssx,sy. 

………………………………………………………………………………………

………………………………………………………………………………………

…………………………….……………………………………………………… 

5)  Is a simultaneous shearing the same as the shearing in one direction followed by a 
shearing in another direction? Why?

………………………………………………………………………………………

………………………………………………………………………………………

…………………………….……………………………………………………… 

                                                                                             

1.3    COMPOSITE TRANSFORMATIONS 

We can build complex transformations such as rotation about an arbitrary point, 
mirror reflection about a line, etc., by multiplying the basic matrix transformations. 
This process is called concatenation of matrices and the resulting matrix is often 
referred to as the composite transformation matrix. In composite transformation, a 
previous transformation is pre-multiplied with the next one. 
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In other words we can say that a sequence of the transformation matrices can be 
concatenated into a single matrix. This is an effective procedure as it reduces because 
instead of applying initial coordinate position of an object to each transformation 
matrix, we can obtain the final transformed position of an object by applying 
composite matrix to the initial coordinate position of an object.  In other words we can 
say that a sequence of transformation matrix can be concatenated matrix into a single 
matrix.  This is an effective procedure as it reduces computation because instead of 
applying initial coordinate position of an object to each transformation matrix, we can 
obtain the final transformed position of an object by applying composite matrix to the 
initial coordinate position of an object. 
 
1.3.1 Rotation about a Point 
 
Given a 2-D point P(x,y), which we want to rotate, with respect to an arbitrary point 
A(h,k). Let P’(x’y’) be the result of anticlockwise rotation of point P by angle θ about 
A, which is shown in Figure 6.  

 
 
            
                           
               
 
 

  
                              F

Y 

      O    

Y’ P’(x’, y’) 

P(x, y) 

A(h, k) 

θ 

     X’ 

 
Since, the rotation
of basic transform
the rotation about
transformation Rθ

 
1) Translate the 

origin. 
2) Perform the r
3) Translate the 

 
Using v=hI+kJ as
transformations: 
 
                       Rθ,A
                            
                            
                        =  
                            
 
                            
                         = 
                            
                            
Example 5: Perfo
arbitrary point P(–
 
Solution: Given t
homogeneous coo
 

φ
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igure 6                       X 

 matrix Rθ is defined only with respect to the origin, we need a set 
ations, which constitutes the composite transformation to compute 
 a given arbitrary point A, denoted by Rθ,A. We can determine the 
,A  in three steps: 

point A(h,k) to the origin O, so that the center of rotation A is at the 

equired rotation of  θ degrees about the origin, and 
origin back to the original position A(h,k). 

 the translation vector, we have the following sequence of  three 

 =T-v. Rθ. Tv  
 
      1      0   0          cosθ    sinθ    0         1    0   0 
      0      1   0       – sinθ    cosθ    0         0    1   0 
   – h  –  k   1               0         0    1         h    k   1 

    cosθ                          sinθ                        0   
   – sinθ                        cosθ                        0        -------(23) 
   (1– cosθ).h+k.sinθ  (1– cosθ).k – h.sinθ  1 
             
rm a 450 rotation of a triangle A (0,0), B (1,1), C (5,2) about an 
1, –1). 

riangle ABC, as show in Figure (a), can be represented in 
rdinates of vertices as: 
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From equation (23), a rotation matrix RQ, A about a given arbitrary point A (h, k) is: 
 

( ) ( ) 















−−+−
−=

1
0
0

..1..1
,

θθ
θ
θ

θθ
θ
θ

SinhkCos
Cos
Sin

SinkhCos
Sin

Cos
ARq  

 

Thus  
( ) 
















−−
−=

1
0
0

12
2/2
2/2

1
2/2

2/2

,45 AR o  

 
So the new coordinates [ ]CBA ′′′  of the rotated triangle [ABC] can be found as: 
 

[ ]CBA ′′′  = [ABC] .   =   .   AoR ,45















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1
1

2
1
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5
1
0
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.
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−
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Thus, = (− 1, A′ 12 − ), ( )1221,B −−=′ ,  and  





 −−=′ 12

2
9,12

2
3C .  The 

following figure (a) and (b) shows a given triangle, before and after the rotation. 
 Y 
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Figure (a)                                                      Figure (b)

Reflection about a Line 

tion is a transformation which generates the mirror image of an object. As 
sed in the previous block, the mirror reflection helps in achieving 8-way 
etry for the circle to simplify the scan conversion process. For reflection we 
o know the reference axis or reference plane depending on whether the object is 
r 3-D. 
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Let the line L be represented by y=mx+c, where ‘m’ is the slope with respect to the x 
axis, and ‘c’ is the intercept on y-axis, as shown in Figure 7. Let P’(x’,y’) be the 
mirror reflection about the line L of point P(x,y). 
 

L′ 
θ θ 

(O, C) 

Y = mx + c 
L 

X 

Y 
 
 
   
 
 
 
 
 
 

Figure 7  
 
The transformation about mirror reflection about this line L consists of the following 
basic transformations: 
 
1) Translate the intersection point A(0,c) to the origin, this shifts the line L to L’. 
2) Rotate the shifted line L’ by –θ degrees so that the line L’ aligns with the x-axis. 
3) Mirror reflection about x-axis. 
4) Rotate the x-axis back by θ degrees 
5) Translate the origin back to the intercept point (0,c). 
 
In transformation notation, we have 
                                                        ML= T-v.R-θ.MX.Rθ.Tv    ,     where v=0I+cJ  
                   
              1   0   0         cosθ   –sinθ     0     1   0    0       cosθ     sinθ    0        1    0    0 
  ML =    0   1   0         sinθ     cosθ     0     0  –1   0       –sinθ    cosθ   0        0    1    0 
              0  –c   1           0         0        1     0    0   1          0         0       1        0    c    1 
 
                cos2θ – sin2θ       2.cosθ.sinθ                0    
         =    2.sinθ.cosθ         sin2θ – cos2θ               0                              ----------(24)    
               –2.c.sinθ.cosθ   – c.(sin2θ – cos2θ)+c    1 
 
Let tanθ=m, the standard trigonometry yields sinθ=m/√(m2+1) and cosθ= 1/√(m2+1). 
Substituting these values for sinθ and cosθ in the equation (24), we have: 
 
          
  ML=     (1– m2)/ (m2 +1)    2m/(m2 +1)         0 

        2m/(m2 +1)         (m2 –1)/(m2 +1)    0                                  ------------(25) 
              –2cm/(m2 +1)       2c/(m2 +1)            1 
 
Special cases  
 
1) If we put c = 0 and m=tanθ=0 in the equation (25) then we have the reflection 

about the line y = 0 i.e. about x-axis. In matrix form: 
 
                                                          1      0       0 
                                               Mx=   0     –1      0                               ----------(26) 

     0      0       1 
 
2)  If c = 0 and m=tanθ=∞ then we have the reflection about the line x=0 i.e. about  

y-axis. In matrix form: 
                                                         –1    0     0 
                                              My=    0      1     0                                   ---------(27) 

      0      0    1 



 Transformations 
 

 

4) To get the mirror reflection about the line y = x, we have to put m=1 and c=0.                      
In matrix form:          

                                                             0     1     0 
                                                My=x =   1     0     0                     -----------(28) 

         0     0     1 
                       
5)  Similarly, to get the mirror reflection about the line y = – x, we have to put m = –1 

and c = 0. In matrix form:     
                                                                  0     –1      0 
                                                  My=-x =   –1      0       0              -----------(29) 

             0       0       1 
                       
6)  The mirror reflection about the Origin (i.e., an axis perpendicular to the xy plane 

and passing through the origin).         
                                                                    –1      0      0 
                                                    Morg =       0     –1     0               ----------(30)  
                                                                     0       0      1 
 

 Figure  (b) 24

 

z

y
 
 
 
 
 

x  
 
 mirror 

Figure 7(a) 
 

Example 6: Show that two successive reflections about either of the coordinate axes 
is equivalent to a single rotation about the coordinate origin. 
 
Solution: Let (x, y) be any object point, as shown in Figure (a).  Two successive 
reflection of P, either of the coordinate axes, i.e., Reflection about x-axis followed by 
reflection about y-axis or vice-versa can be reprosecuted as: 
 
(x, y)                  (x, − y)                      (−x, −y) ----(i) 
 
 
(x, y)                  (x, − y)                      (−x, −y) ----(ii) 

D 

C B 

A 

E 

.P(x, y) 

Mx My 

My Mx 

 
   Figure (a) 
 
The effect of (1) and (2) can also be illustrated by the following Figure (b) and  
Figure (c) E 

 
 D A Reflection about x-axis  P  
 B 

C  
 
 

B’  C’ 

 
C” B” 

 
 P” P’ A’  D’ D” A” 

 
E’ Reflection about y-axis E” 
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Reflection about y-axis  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                       Figure (c)  
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From equation (i) and (ii), we can write: 

Reflection about x-axis 

(x, y)                  (− x, − y)    =  (x, y)        (iii) 







−

−
1

0
0
1

Equation (3) is the required reflection about the origin.  Hence, two successive 
reflections about either of the coordinate axes is just equivalent to a single rotation 
about the coordinate origin. 
 
Example 7:  Find the transforation matrix for the reflection about the line y = x. 
 
Solution:  The transformation for mirror reflection about the line y = x, consists of the 
following three basic transformations. 
 
 
 
 
 
 
 
 

                                                          Figure (a) 

L 

y = x 

45o 

 
 

1) Rotate the line L through 45o in clockwise rotation,   
2) Perform the required Reflection about the x-axis. 
3) Rotate back the line L by − 45o 
i.e., 
 
ML = . Mo45R x . o45-R  
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Example 8 : Reflect the diamond-shaped polygon whose vertices are A(–1,0), 
B(0, –2),C(1,0) and D(0,2) about (a) the horizontal line y=2, (b) the vertical line x=2, 
and (c) the line y=x+2. 
 
Solution:  We can represent the given polygon by the homogeneous coordinate matrix 
as 
                                    –1   0    1                                    
         V=[ABCD] =      0  –2    1 
                                     1    0    1  
                                     0    2    1 
a)  The horizontal line y=2 has an intercept (0,2) on y axis and makes an angle of 0 

degree with the x axis. So m=0 and c=2. Thus, the reflection matrix  
             
 ML= T-v.R-θ.Mx.Rθ.T-v ,     where v=0I+2J 
                                                                                             1    0    0 
                                                                                       =    0  –1    0 
                                                                                             0    4    1                   
      So the new coordinates A’B’C’D’ of the reflected polygon ABCD can be found 

as: 
              [A’B’C’D’]=[ABCD]. ML 
                                                            
                                   –1    0    1          1    0    0           –1    4    1                    
                             =      0  –2    1     .    0  –1   0    =      0     6    1 
                                     1    0   1           0   4   1             1     4    1 
                                     0    2   1                                     0     2   1 
 
      Thus, A’=(-1,4), B’=(0,6), C’=(1,4) and D’=(0,2). 
 
b) The vertical line x=2 has no intercept on y-axis and makes an angle of 90 degree 

with the x-axis. So m=tan900=∞ and c=0. Thus, the reflection matrix  
 

            ML= T-v.R-θ.My.Rθ.T-v ,     where v=2I 
                                                                                             –1    0    0 
                                                                                       =     0    1    0 
                                                                                              4    0    1                   
              
      So the new coordinates A’B’C’D’ of the reflected polygon ABCD can be found 

as: 
              [A’B’C’D’]=[ABCD]. ML 
                                                  
                                   –1   0    1          –1    0    0           5     0    1                    
                             =      0 –2    1     .     0    1    0     =     4   –2   1 
                                     1    0   1            4    0    1            3     0   1 
                                     0    2   1                                      4     2   1 
 
            Thus, A’=(5,0), B’=(4,-2), C’=(3,0) and D’=(4,2) 
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c)  The line y=x+2 has an intercept (0,2) on y-axis and makes an angle of  450 with 
the x-axis. So m=tan450=1 and c=2. Thus, the reflection matrix  

             
                        0    1    0              
           ML=      1    0    0 
                        –2  2    1       
       
         The required coordinates A’,B’, C’, and D’ can be found as: 
         [A’B’C’D’]=[ABCD]. ML 
                                                             

     

1 0 1
0 2 1
1 0 1
0 2 1

− 
 − 
 
 
 

0 1 0
1 0 0
2 2 1

 

 − 

 
 .      =       

 
        

2 1 1
4 2 1
2 3 1

0 2 1

− 
 −
−
 
 

 
 Thus, A’=(–2,1), B’=(–4,2), C’=(–2,3) and D’=(0,2) 
 
The effect of the reflected polygon, which is shown in Figure (a), about the line y=2, 
x=2, and y=x+2 is shown in Figure (b) - (d), respectively. 
 
 
 
 
    
 
 
      
 
    
 
 
 

 Figure (a)               Figure (b) 
 
 
 
 
 
 
 
 
 
 
 
   

 
 

B’ 

B’ 

C 

D 

A 

B 

O 

C’ 

D’ 

A’ 

O 

D’ 

C’ A’ 

B’ 

O 

C’ 

D’ 

A’ 
O 

Figure (c)               Figure (d) 
 

1.4   HOMOGENEOUS COORDINATE SYSTEMS 
 
Let P(x,y) be any point in 2-D Euclidean (Cartesian) system. 
 
In Homogeneous Coordinate system, we add a third coordinate to a point. Instead of 
(x,y), each point is represented by a triple (x,y,H) such that H≠0; with the condition 
that (x1,y1,H1)=(x2,y2,H2) ↔ x1/H1 = x2/H2 ; y1/H1 = y2/H2. 
 
(Here, if we take H=0, then we have point at infinity, i.e., generation of horizons).  
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Thus, (2,3,6) and (4,6,12) are the same points are represented by different coordinate 
triples, i.e., each point has many different Homogeneous Coordinate representation. 
 
2-D  Euclidian System                     Homogeneous Coordinate System     
Any point (x,y)                                  (x,y,1) 
                                                                   
                                                           
                                                          If (x,y,H) be any point in HCS(such that H≠0);  
                                                          Then (x,y,H)=(x/H,y/H,1) 
                                                            
                 (x/H,y/H)                           (x,y,H) 
 
 
Now, we are in the position to construct the matrix form for the translation with the 
use of homogeneous coordinates. 
 
For translation transformation (x,y) (x+tx,y+ty) in Euclidian system, where tx and ty 
are the translation factor in x and y direction, respectively. Unfortunately, this way of 
describing translation does not use a matrix, so it cannot be combined with other 
transformations by simple matrix multiplication. Such a combination would be 
desirable; for example, we have seen that rotation about an arbitrary point can be done 
by a translation, a rotation, and another translation. We would like to be able to 
combine these three transformations into a single transformation for the sake of 
efficiency and elegance. One way of doing this is to use homogeneous coordinates. In 
homogeneous coordinates we use 3x3 matrices instead of 2x2, introducing an 
additional dummy coordinate H. Instead of (x,y), each point is represented by a triple 
(x,y,H) such that H≠0; In two dimensions the value of H is usually kept at 1 for 
simplicity.  
 
Thus, in HCS (x,y,1) → (x+tx,y+ty,1), now, we can express this in matrix form as: 
 
                                    1     0    0  
    (x’,y’,1)=(x,y,1)      0    1     0  
                                    tx    ty     1  
 
The advantage of introducing the matrix form of translation is that it simplifies the 
operations on complex objects, i.e., we can now build complex transformations by 
multiplying the basic matrix transformations.  
 
In other words, we can say, that a sequence of transformation matrices can be 
concatenated into a single matrix. This is an effective procedure as it reduces the 
computation because instead of applying initial coordinate position of an object to 
each transformation matrix, we can obtain the final transformed position of an object 
by applying composite matrix to the initial coordinate position of an object. Matrix 
representation is standard method of implementing transformations in computer 
graphics. 
 
Thus, from the point of view of matrix multiplication, with the matrix of translation, 
the other basic transformations such as scaling, rotation, reflection, etc., can also be 
expressed as 3x3 homogeneous coordinate matrices. This can be accomplished by 
augmenting the 2x2 matrices with a third row (0,0,x) and a third column. That is                        
                   
                 0                                          a    b   0                                                
                 0                                          c    d   0 
                 1                                          0    0   1 
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Example 9:  Show that the order in which transformations are performed is important 
by applying the transformation of the triangle ABC by: 
 
(i) Rotating by 45o about the origin and then translating in the direction of the vector 

(1,0), and  
 
(ii) Translating first in the direction of the vector (1,0), and then rotating by 45o about 

the origin, where A = (1, 0) B = (0 ,1) and C = (1, 1). 
 
Solution:   We can represent the given triangle, as shown in Figure (a), in terms of 
Homogeneous coordinates as: 
 

C (1,1) B 

A 
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      Figure (a) 
 
Suppose the rotation is made in the counter clockwise direction.  Then, the 
transformation matrix for rotation, R , in terms of homogeneous coordinate system 
is given by: 

o45

    =  o45R =

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and the Translation matrix, Tv, where V = 1I + 0J is: 
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where tx and ty is the translation factors in the x and y directions respectively. 
 
i) Now the rotation followed by translation can be computed as: 

o45R . Tv =  
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So the new coordinates CBA ′′′ of a given triangle ABC can be found as: 
[ ] [ ] v45 T.R.CBACBA o=′′′  
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implies that the given triangle A(1,0), B (0, 1) C (1, 1) be transformed into  
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  and ( )2,1C′ , respectively, as shown in 

Figure (b). 
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                        Figure (b) 
 
Similarly, we can obtain the translation followed by rotation transformation as: 
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And hence, the new coordinates CBA ′′′ can be computed as: 
[ ] [ ] o45v RT.CBACBA =′′′  
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Thus, in this case, the given triangle A(1,0), B(0, 1) and C(1,1) are transformed into 

( ) ( ) ,
2

3,
2
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′′′′′′ CandBA  respectively, as shown in 

Figure (c).           
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2)  Give a single 3x3 homogeneous coordinate transformation matrix, which will 
have the same effect as each of the following transformation sequences.  
a) Scale the image to be twice as large and then translate it 1 unit to the left. 
b) Scale the x direction to be one-half as large and then rotate counterclockwise 

by 900 about the origin. 
c) Rotate counterclockwise about the origin by 900 and then scale the x direction 

to be one-half as large. 
d) Translate down ½ unit, right ½ unit, and then rotate counterclockwise by 450. 

 
3) Obtain the transformation matrix for mirror reflection with respect to the line 

y=ax, where ‘a’ is a constant. 

………………………………………………………………………………………

………………………………………………………………………………………

……………………………………………………………………………………… 

4) Obtain the mirror reflection of the triangle formed by the vertices A(0,3),B(2,0) 
and C(3,2) about the line passing through the points (1,3) and (–1, –1). 

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

……………………………………………………………………………………… 

1.5   3-D TRANSFORMATIONS 
 
The ability to represent or display a three-dimensional object is fundamental to the 
understanding of the shape of that object. Furthermore, the ability to rotate, translate, 
and project views of that object is also, in many cases, fundamental to the 
understanding of its shape. Manipulation, viewing, and construction of three-
dimensional graphic images require the use of three-dimensional geometric and 
coordinate transformations. In geometric transformation, the coordinate system is 
fixed, and the desired transformation of the object is done with respect to the 
coordinate system. In coordinate transformation, the object is fixed and the desired 
transformation of the object is done on the coordinate system itself. These 
transformations are formed by composing the basic transformations of translation, 
scaling, and rotation. Each of these transformations can be represented as a matrix 
transformation. This permits more complex transformations to be built up by use of 
matrix multiplication or concatenation. We can construct the complex 
objects/pictures, by instant transformations. In order to represent all these 
transformations, we need to use homogeneous coordinates.  
 
Hence, if P(x,y,z) be any point in 3-D space, then in HCS, we add a fourth-coordinate 
to a point. That is instead of (x,y,z), each point can be represented by a Quadruple 
(x,y,z,H) such that H≠0; with the condition that x1/H1=x2/H2; y1/H1=y2/H2; 
z1/H1=z2/H2. For two points (x1, y1, z1, H1) = (x2, y2, z2, H2) where H1 ≠ 0, H2 ≠ 0. 
Thus any point (x,y,z) in Cartesian system can be represented by a four-dimensional 
vector as (x,y,z,1) in HCS. Similarly, if (x,y,z,H) be any point in HCS then 
(x/H,y/H,z/H) be the corresponding point in Cartesian system. Thus, a point in three-
dimensional space (x,y,z) can be represented by a four-dimensional point as: 
(x’,y’,z’,1)=(x,y,z,1).[T], where [T] is some transformation matrix and (x’,y’z’,1) is a 
new coordinate of a given point (x,y,z,1), after the transformation. 
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The generalized 4x4 transformation matrix for three-dimensional homogeneous 
coordinates is: 

 
                  a   b     c     w                    
                  d   e     f      x                   (3x3)          (3x1) 
 [T]=          g   h     I      y         =                                                --------(31) 

                          l   m    n     z 
                                                                  (1x3)         (1x1) 
 
The upper left (3x3) sub matrix produces scaling, shearing, rotation and reflection 
transformation. The lower left (1x3) sub matrix produces translation, and the upper 
right (3x1) sub matrix produces a perspective transformation, which we will study in 
the next unit. The final lower right-hand (1x1) sub matrix produces overall scaling.  
 
1.5.1 Transformation for 3-D Translation 
 
Let P be the point object with the coordinate (x,y,z). We wish to translate this object 
point to the new position say, P’(x’,y’,z’) by the translation Vector V=tx.I+ty.J+tz.K , 
where tx , ty and tz  are the translation factor in the x, y, and z directions respectively, as 
shown in Figure 8. That is, a point (x,y,z) is moved to (x+ tx,y+ ty,z+ tz). Thus the new 
coordinates of a point can be written as:   
x’=x+ tx 
y’=y+ty         =Tv                                                                                                                                 ---------(32) 
z’=z+tz  
 
 
 
                                                                                                   
 
 
 
                                                                            
 
 
                                         
 

Figure 8 
 
In terms of homogeneous coordinates, equation (32) can be written as 
 
                                       1    0    0    0 
 (x’,y’,z’,1)=(x,y,z,1)     0    1    0    0                                              --------(33) 
                                       0    0    1    0                                         
                                       tx      ty     tz      1                                        

x 

v
P (x, y, z)

z 

P’ (x’, y’, z’) 
(x + tx, y + ty, z + tz) 

v'

y 

 
i.e., P’h = Ph.Tv                                                                                                                              ----------(34) 
                                                                           

 
1.5.2 Transformation for 3-D Rotation 
 
Rotation in three dimensions is considerably more complex then rotation in two 
dimensions. In 2-D, a rotation is prescribed by an angle of rotation θ and a centre of 
rotation, say P. 
 
However, in 3-D rotations, we need to mention the angle of rotation and the axis of 
rotation. Since, we have now three axes, so the rotation can take place about any one 
of these axes. Thus, we have rotation about x-axis, y-axis, and z-axis respectively.  
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Rotation about z-axis 
 
Rotation about z-axis is defined by the xy-plane. Let a 3-D point P(x,y,z) be rotated to 
P’(x’,y’,z’) with angle of rotation θ see Figure 9. Since both P and P’ lies on xy-plane 
i.e., z=0 plane their z components remains the same, that is z=z’=0. 
 Z 

Z  
 
 
 
 
 
 
                                                                        P’(x’, y ’) 

θ  

’, zY 

P’(x’, y’, o) 

X 

θ 

Y 

 
 

X  
P(x, y, z)  P(x, y, o) 

 
Figure 9 Figure 10  

 
Thus, P’(x’y’,0) be the result of rotation of point P(x,y,0) making a positive 
(anticlockwise) angle φ with respect to z=0 plane, as shown in Figure 10.  
 
From figure (10), 
 
P(x,y,0) = P(r.cosφ,r.sinφ,0) 
P’(x’,y’,0)=P[r.cos(φ+θ),rsin(φ+θ),0] 
 
The coordinates of P’ are: 
 
x’=r.cos(θ+φ)=r(cosθcosφ – sinθsinφ) 
                      =x.cosθ – y.sinθ      (where x=rcosφ and y=rsinφ) 
 
similarly; 
 
y’= rsin(θ+φ)=r(sinθcosφ + cosθ.sinφ) 
                     =xsinθ+ycosθ       
Thus, 
                   x’= x.cosθ – y.sinθ 
[Rz]θ =        y’= xsinθ + ycosθ                                         ----------(35) 
                   z’=z 
 
In matrix form, 
                          
                               cosθ     sinθ     0 
 (x’y’,z’)=(x,y,z)   –sinθ    cosθ     0                             ----------(36)     
                                  0         0        1 
 
In terms of HCS, equation (36) becomes 
                       
                                       cosθ    sinθ   0      0 
   (x’y’,z’,1)=(x,y,z,1)  –sinθ    cosθ   0      0                 ----------(37)   
                                        0         0       1      0 
                                        0         0       0      1 
That is, P’h = Ph.[Rz]θ                                                       ---------(38) 
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Rotations about x-axis and y-axis 
 
Rotation about the x-axis can be obtained by cyclic interchange of x y z x in 
equation (35) of the z-axis rotation i.e., 
 
               x’= x.cosθ-y.sinθ 
[Rz]θ=     y’= xsinθ+ycosθ          
                z’=z 
 
 
  
                        After cyclic interchange of x y z x 
 
 
               y’= y.cosθ-z.sinθ 
[Rx]θ=    z’= y.sinθ+z.cosθ                                    --------(39) 
               x’= x 
 
So, the corresponding transformation matrix in homogeneous coordinates becomes 
                  
                                     1      0        0        0 
  (x’y’,z’,1)=(x,y,z,1)      0    cosθ   sinθ     0                   
                                     0  – sinθ   cosθ    0 
                                     0       0         0      1 
  
 That is, P’h = Ph.[Rx]θ                                                     -------(40) 
 
Similarly, the rotation about y-axis can be obtained by cyclic interchange of 
x y z x in equation (39) of the x-axis rotation [Rx]θ i.e., 
                         
               y’= y.cosθ-z.sinθ 
[Rx]θ=    z’= y.sinθ+z.cosθ          
               x’= x 
 
 
                       After cyclic interchange of x y z x 
 
                     
               z’= z.cosθ-x.sinθ 
[Ry]θ=    x’= z.sinθ+x.cosθ                                        -------(41) 
               y’= y 
 
So, the corresponding transformation matrix in homogeneous coordinates becomes 
                
                                       cosθ     0   – sinθ    0 
  (x’y’,z’,1)=(x,y,z,1)       0        1        0       0       
                                       sinθ     0       cosθ   0  
                                       0          0         0      1 
  
That is, P’=P. [Ry]θ                                                      -------(42) 
 
1.5.3 Transformation for 3-D Scaling 
 
As we have seen earlier, the scaling process is mainly used to change the size of an 
object. The scale factors determine whether the scaling is a magnification, s>1, or a 
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reduction, s<1. Two-dimensional scaling, as in equation (8), can be easily extended to 
scaling in 3-D case by including the z-dimension. 
 
For any point (x,y,z), we move into (x.sx,y.sy,z.sz), where sx, sy, and sz are the scaling 
factors in the x,y, and z-directions respectively. 
 
Thus, scaling with respect to origin is given by: 
 
                      x’= x.sx 
Ssx,sy,sz =      y’= y.sy                                              ---------(43) 
                     z’= z.sz 
 
In matrix form, 
                          
                                 sx     0      0 
 (x’y’,z’)=(x,y,z)      0     sy      0               ---------(44)     
                                 0      0      sz 
 
In terms of HCS, equation (44) becomes 
                       
                                        sx     0      0     0 
   (x’y’,z’,1)=(x,y,z,1)     0     sy      0     0                   
                                        0      0      sz     0 
                                        0      0       0     1 
  
 That is, P’=P. Ssx,sy,sz                             --------(45) 
 
1.5.4 Transformation for 3-D Shearing  
 
Two-dimensional xy- shearing transformation, as defined in equation (19), can also be 
easily extended to 3-D case. Each coordinate is translated as a function of 
displacements of the other two coordinates. That is, 
 
                  x’=x+a.y+b.z 
   Shxyz=      y’=y+c.x+d.z                        --------(46) 
                  z’=z+e.x+f.y 
 
where a,b,c,d,e and f are the shearing factors in the respective directions. 
 
In terms of HCS, equation (46) becomes 
                       
                                         1    c    e     0 
   (x’y’,z’,1)=(x,y,z,1)      a    1    f     0                   
                                         b    d    1    0 
                                         0    0    0    1 
 
 That is, P’h = Ph.Shxyz                                             -------(47) 
 
Note that the off-diagonal terms in the upper left 3x3 sub matrix of the generalized 
4x4 transformation matrix in equation (31) produce shear in three dimensions. 
 
1.5.5 Transformation for 3-D Reflection  
 
For 3-D reflections, we need to know the reference plane, i.e., a plane about which the 
reflection is to be taken. Note that for each reference plane, the points lying on the 
plane will remain the same after the reflection. 
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Mirror reflection about xy-plane 
 
Let P(x,y,z) be the object point, whose mirror reflection is to be obtained about xy-
plane(or z=0 plane). For the mirror reflection of P about xy-plane, only there is a 
change in the sign of z-coordinate, as shown in Figure (11). That is, 
                
                x’=x 
Mxy =       y’=y                              -------(48) 
                z’=-z 
 
In matrix form,                                                                                 
 
 
 
 
 
 
                                                                                                         Figure 11 
                          
                                 1     0      0 
 (x’y’,z’)=(x,y,z)      0     1      0              ----(49)     
                                 0      0    -1 
 
In terms of HCS (Homogenous coordinate systems), equation (49) becomes 
                       
                                        1     0     0     0 
   (x’y’,z’,1)=(x,y,z,1)     0     1     0     0                   
                                        0     0    -1     0 
                                        0     0      0    1 
  
 That is, P’=P.Mxy                                   -----(50) 
 
Similarly, the mirror reflection about yz plane shown in Figure 12 can be represented 
as: 
 
                x’=-x 
Myz =       y’=y                                       -----(51) 
                z’=z 
 
 
 
 
 
 
 Y 

       
 

In matrix form, 
                          
                                –1    0      0 
 (x’y’,z’)=(x,y,z)      0     1      0              ------(52)     
                                 0      0     1 
 
In terms of HCS, equation (52) becomes 
                       
                                      –1     0     0     0 
   (x’y’,z’,1)=(x,y,z,1)     0     1     0     0                   
                                        0     0     1     0 
                                        0     0      0    1 

X

P(−x, y, z) 

Figure 12 

P (x, y, z) 

Z 

X 

Z 

P 

Z = 0   plane 

P(x, y, z) 

P(x, y, −z) 

Y 
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 That is, P’=P. Myz  ;                            ------(53) 
 
 and similarly, the reflection about xz plane, shown in Figure 13, can be presented as: 
                x’=x 
Mxz =       y’= − y                                  -------(54) 
                z’=z 
 
In matrix form, 
                   
                                 1     0      0 
 (x’y’,z’)=(x,y,z)      0   –1      0            -------(55)     
                                 0      0     1 
 
In terms of HCS, equation (55) becomes 
                       
                                        1     0     0     0 
   (x’y’,z’,1)=(x,y,z,1)     0   –1     0     0                   
                                        0     0     1      0 
                                        0     0      0    1   
  That is, P’=P. Mxz                             --------(56)  

Figure 13 

P (x, y, z) 

X 

Z 

Y 

                                                                         
 

1.6      SUMMARY 
     
In this unit, the following things have been discussed in detail: 
 
• Various geometric transformations such as translation, rotation, reflection, scaling 

and shearing. 
• Translation, Rotation and Reflection transformations are used to manipulate the 

given object, whereas Scaling and Shearing transformation changes their sizes. 
• Translation is the process of changing the position (not the shape/size) of an 

object w.r.t. the origin of the coordinate axes. 
• In 2-D rotation, an object is rotated by an angle θ. There are two cases of 2-D 

rotation: case1- rotation about the origin and case2- rotation about an arbitrary 
point. So, in 2-D, a rotation is prescribed by an angle of rotation θ and a centre of 
rotation, say P. However, in 3-D rotations, we need to mention the angle of 
rotation and the axis of rotation. 

• Scaling process is mainly used to change the shape/size of an object. The scale 
factors determine whether the scaling is a magnification, s>1, or a reduction, s<1. 

• Shearing transformation is a special case of translation. The effect of this 
transformation looks like “pushing” a geometric object in a direction that is 
parallel to a coordinate plane (3D) or a coordinate axis (2D). How far a direction 
is pushed is determined by its shearing factor. 

• Reflection is a transformation which generates the mirror image of an object. For 
reflection we need to know the reference axis or reference plane depending on 
whether the object is 2-D or 3-D. 

• Composite transformation involves more than one transformation concatenated 
into a single matrix. This process is also called concatenation of matrices. Any 
transformation made about an arbitrary point makes use of composite 
transformation such as Rotation about an arbitrary point, reflection about an 
arbitrary line, etc.  

• The use of homogeneous coordinate system to represent the translation 
transformation in matrix form, extends our N-coordinate system with (N+1) 
coordinate system. 
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• The transformations such as translation, rotation, reflection, scaling and shearing 
can be extended to 3D cases. 

   
                                                                                               

1.7      SOLUTIONS/ANSWERS 
    
Check Your Progress 1 
 
1)  Matrix representation are standard method of implementing transformations in 

computer graphics.  But unfortunately, we are not able to represent all the 
transformations in a (2 x 2) matrix form; such as translation.  By using 
Homogeneous coordinates system (HCS), we can represent all the transformations 
in matrix form.  For translation of point (x, y) → (x +tx, y + ty), it is not possible to 
represent this transformation in matrix form.  But, now in HCS; 

 

        ( )  ( )
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yx

The advantage of introducing the matrix form for translation is that we can now 
build a complex transformation by multiplying the basic matrix transformation.  
This is an effective procedure as it reduces the computations. 

 
2)   The translation factor, tx and ty can be obtained from new old coordinates of vertex 

C. 
                tx = 6   −1  =  5 
                ty = 7   −1    = 6  
 The new coordinates [A′ B′ C′ D′] = [A B C D] . Tv 
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      Thus A′ = (5, 6), B′ = (5, 7), C′ = (6, 7) and D′ = (6, 6) 
 
3)  The new coordinate P′ of a point P, after the Rotation of 45o is: 
 P′ = P O45R.
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Now, this point P′is again translated by tx = 5 and ty = 6.  So the final coordinate 
P′′ of a given point P, can be obtained as: 
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                     =   ( )
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60, 6 / 2,1 . 0 1 0 5, 6, 1
65 6 1

 
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         Thus P′′ (x′′, y′′) = 6(5, 6)
2
+  

4)        

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Q  = Identity matrix 
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Therefore, we can say that are inverse because θ−θ R.R .IR.R =θ−θ   So 

 i.e., inverse of a rotation by θ  degree is a rotation in the opposite 
direction. 

1RR −
θθ− =

 
Check Your Progress 2 
 
1)  Scaling transformation is mainly used to change the size of an object. The scale 

factors determines whether the scaling is a compression, S < 1 or a enlargement,  
S > 1, whereas the effect of shearing is “pushing” a geometric object is a direction 
parallel to the coordinate axes. Shearing factor determines, how far a direction is 
pushed. 
 

2)  S a,b = , S

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from (1) and (2) we can say: 
   Sa,b. Sc,d =  Sc,d. Sa,b = Sac, bd 
 

3) 
a) Shift an image to the right by 3 units  

 

∴ S =  
0 0 0
0 1 0
3 0 1

 
 
 
 
 

b) Shift the image up by 2 units and down by 1 units i.e. Sx = Sx + 2 and  
Sy = Sy – 1 
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 ∴ S =   ∴ S =  
   = 
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c) Move the image down 2/3 units and left 4 units  
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4) SSx, Sy =   and R
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we have to find out condition under which SSx, Sy. Rθ = Rθ. Ss, Sy 
 

so  SSx, Sy. Rθ = .  = 
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In order to satisfy SSx, Sy. Rθ = Rθ. SSx,Sy 
 
We have  Sy. sin θ = sinθ.Sx ⇒ either sin θ = 0 or θ = n π, where n is an 
integer. 
  sin θ (Sy – Sx) = 0   or Sx = Sy i.e. scaling transform is uniform. 
 

5)  No, since       Shx (a). Shy(b) = .  =   — (1) 
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from (1) , (2) and (3), we can say that     
  
 Shxy (a, b) ≠ Shx (a) . Shy (b) ≠ Shy (b). Shx (a) 

 
Check Your Progress 3 
 

1)   and
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




 We have to show that 
 
 My = x = Mx . o90R  

 Since Mx .   o90R  = xM
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Hence, a reflection about the line y = x, is equivalent to a reflection relative to the 
x-axis followed by a counter clockwise rotation of 90o. 

 
2)  The required single (3 x 3) homogeneous transformation matrix can be obtained 

as follows: 
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 3) Let OP be given line L, which makes an angle θ with respect to 

 
 
 
 
 
 
 
 
 
The transformation matrix for reflection about an arbitrary line y = mx + c is  
(see equation 25). 
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For line y = ax;  m = tanθ = a and intercept on y-axis is 0 i.e. c = 0.  Thus, 
transformation matrix for reflection about a line y = ax is: 
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4)  The equation of the line passing through the points (1,3) and (−1, −1) is obtained 
as: 

             y = 2x + 1                                     (1) 

θ 
O 

P 

y = ax 

L 

y 

x 
C (3, 2) 

B (2, 0) 

P1 (−1, 1) 

(0, 1) 
  θ 

P2 (1, 3) 
L 

L’ 

 
 
 
 
 
 
 
 
 
 
                   Figure (a) 
 
If θ is the angle made by the line (1) with the positive x-axis, then  

tanθ = 2 ⇒ Cosθ  = 
2

1  and Sinθ 
5

2  

To obtain the reflection about the line (1), the following sequence of transformations 
can be performed: 
 
1) Translate the intersection point (0, 1) to the origin, this shift the line L to L′ 
2) Rotate the shifted line L′ by −θo  (i.e. clockwise), so that the L′aligns with the x-

axis. 
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3) Perform the reflection about x-axis. 
4) Apply the inverse of the transformation of step (2). 
5) Apply the inverse of the transformation of step (1). 
 
By performing step 1 – step 5, we get 
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So the new coordinates A′B′C′ of the reflected triangle ABC can be found as: 
[A′ B′ C′] = [ABC] . ML 
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Thus, A′ = 







5
11,5/8 ,  B′ = (− 2, 2) and  C′ = (−1, 4), which is shown in Figure (b). 
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Figure (b) 
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2.0  INTRODUCTION 

In unit 1, we have discussed the geometric transformations such as Translation, 
Rotation, Reflection, Scaling and Shearing. Translation, Rotation and Reflection 
transformations are used to manipulate the given object, whereas Scaling and 
Shearing transformations are used to modify the shape of an object, either in 2-D or in 
3-Dimensional. 
 
A transformation which maps 3-D objects onto 2-D screen, we are going to call it  
Projections. We have two types of Projections namely, Perspective projection and 
Parallel projection. This categorisation is based on the fact whether rays coming from 
the object converge at the centre of projection or not. If, the rays coming from the 
object converge at the centre of projection, then this projection is known as 
Perspective projection, otherwise it is Parallel projection. In the case of parallel 
projection the rays from an object converge at infinity, unlike perspective projection 
where the rays from an object converge at a finite distance (called COP). 
 
Parallel projection is further categorised into Orthographic and Oblique projection. 
Parallel projection can be categorized according to the angle that the direction of 
projection makes with the projection plane If the direction of projection of rays is 
perpendicular to the projection plane then this parallel projection is known as 
Orthographic projection and if the direction of projection of rays is not perpendicular 
to the projection plane then this parallel projection is known as Oblique projection. 
The orthographic (perpendicular) projection shows only the front face of the given 
object, which includes only two dimensions: length and width. The oblique projection, 
on the other hand, shows the front surface and the top surface, which includes three 
dimensions: length, width, and height. Therefore, an oblique projection is one way to 
show all three dimensions of an object in a single view. 
 
Isometric projection is the most frequently used type of axonometric projection, 
which is a method used to show an object in all three dimensions (length, width, and 
height) in a single view. Axonometric projection is a form of orthographic projection 
in which the projectors are always perpendicular to the plane of projection. 
 
        
 
        
 
 



 

 

45

Viewing 
Transformations 

 

 

2.1    OBJECTIVES 
   
After going through this unit, you should be able to: 
• define the projection; 
• categorize various types of Perspective and Parallel projections; 
• develop the general transformation matrix for parallel projection; 
• describe and develop the transformation for Orthographic and oblique parallel 

projections;  
• develop the transformations for multiview (front, right, top, rear, left and bottom 

view) projections; 
• define the foreshortening factor and categorize the oblique projection on the basis 

of foreshortening factors; 
• derive the transformations for general perspective projection; 
• describe and derive the projection matrix for single-point, two-point and three-

point perspective transformations, and 
• identify the vanishing points. 

 
                                                                                               

2.2   PROJECTIONS 
   .  
Given a 3-D object in a space, Projection can be defined as a mapping of 3-D object 
onto 2-D viewing screen. Here, 2-D screen is known as Plane of projection or view 
plane, which constitutes the display surface. The mapping is determined by projection 
rays called the projectors. Geometric projections of objects are formed by the 
intersection of lines (called projectors) with a plane called plane of projection /view 
plane. Projectors are lines from an arbitrary point, called the centre of projection 
(COP), through each point in an object. Figure 1 shows a mapping of point P(x,y,z) 
onto its image P′(x’,y’,z’) in the view plane.   
 
 
                                                                                                                                                                                      
   
   
  
     
    
 
 
                    
 
                                                                                                                                                                         

Figure 1 

x 

P(x, y, z) 

Projector 

y

     
                P’(x’,y’,z’) 

z 

 
If, the COP (Center of projection) is located at finite point in the three-space, the 
result is a perspective projection. If the COP is located at infinity, all the projectors are 
parallel and the result is a parallel projection. Figure 2(a)-(b) shows the difference 
between parallel and perspective projections. In Figure 2(a), ABCD is projected to 
A’B’C’D’ on the plane of projection and O is a COP. In the case of parallel 
projection the rays from an object converges at infinity, the rays from the object 
become parallel and will have a direction called ”direction of projection”. 
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Figure 2(a): Perspective projection 

 

 
 

Figure 2(b):  Parallel projection 
 
Taxonomy of Projection 
 
There are various types of projections according to the view that is desired. The 
following Figure 3 shows taxonomy of the families of Perspective and Parallel 
Projections. This categorisation is based on whether the rays from the object converge 
at COP or not and whether the rays intersect the projection plane perpendicularly or 
not. The former condition separates the perspective projection from the parallel 
projection and the latter condition separates the Orthographic projection from the 
Oblique projection. 
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Oblique (par

Orthographic (parallel rays intersect 
view plane perpendicularly) 

allel rays intersect  
view plane not perpendicularly) 

Perspective (Rays from the 
object converges at the COP) 

Parallel (Rays from the  
     object are parallel) 

Single-point Two-point Three-point 

Multiview (view plane 
parallel to principal axes) 

Axonometric (vie plane not  
    parallel to principal axes) 

Cavalier Cabinet 

Trimetric Diametric
Rear Isometric 

Left-SideRight-Side Front Bottom Top 

Projection 

 
Figure 3: Taxonomy of projection 

 
 
The direction of rays is very important only in the case of Parallel projection. On the 
other hand, for Perspective projection, the rays converging at the COP, they do not 
have a fixed direction i.e., each ray intersects the projection plane with a different 
angle. For Perspective projection the direction of viewing is important as this only 
determines the occurrence of a vanishing point. 
 
 2.2.1 Parallel Projection 
 
Parallel projection methods are used by engineers to create working drawings of an 
object which preserves its true shape. In the case of parallel projection the rays from 
an object converge at infinity, unlike the perspective projection where the rays from 
an object converse at a finite distance (called COP). 
 
If the distance of COP from the projection plane is infinite then parallel projection (all 
rays parallel) occurs i.e., when the distance of COP from the projection plane is 
infinity, then all rays from the object become parallel and will have a direction called 
“direction of projection”. It is denoted by d=(d1,d2,d3), which means d makes 
unequal/equal angle with the positive side of the x,y,z axes.  
 
Parallel projection can be categorised according to the angle that the direction of 
projection makes with the projection plane. For example, in Isometric projection, the 
direction of projection d=(d1,d2,d3) makes equal angle (say α) with all the three-
principal axes (see Figure 4).  
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d = (d1, d2, d3)
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Figure 4: Direction of projection 
 
Rays from the object intersect the plane before passing through COP. In parallel 
projection, image points are found as the intersection of view plane with a projector 
(rays) drawn from the object point and having a fixed direction.(see Figure 5). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

d 

z 

y

P2

P1 (x,y,z)

Direction of projection 

 
 
         P’,(x’,y’,z’) 
 
 
    P2’

Figure 5: Parallel projection 
 

Parallel rays from the object may be perpendicular or may not be perpendicular to the 
projection plane. If the direction of projection d=(d1,d2,d3) of the rays is 
perpendicular to the projection plane (or d has the same direction as the view plane 
normal N), we have Orthographic projection otherwise Oblique projection. 
 
Orthographic projection is further divided into Multiview projection and axonometric 
projection, depending on whether the direction of projection of rays is parallel to any 
of the principal axes or not. If the direction of projection is parallel to any of the 
principal axes then this produces the front, top and side views of a given object, also 
referred to as multiview drawing (see Figure 8).  
 
Axonometric projections are orthographic projection in which the direction of 
projection is not parallel to any of the 3 principle axes. Oblique projections are non-
orthographic parallel projections i.e., if the direction of projection d=(d1,d2,d3) is not 
perpendicular to the projection plane then the parallel projection is called an Oblique 
projection. 
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Transformation for parallel projection 
 
Parallel projections (also known as Orthographic projection), are projections onto one 
of the coordinate planes x = 0, y = 0 or z = 0. The standard transformation for parallel 
(orthographic) projection onto the xy-plane (i.e. z=0 plane) is: 
                      
Ppar,z =            

                     
'
'
' 0

x x
y y
z

=
 =
 =

  

In matrix form: 

                Ppar,z = 
     ------------------------------(1) 


















1000
0000
0010
0001

 
Thus, if P(x,y,z) be any object point in space, then projected point P’(x’y’z’) can be 
obtained as: 

(x’,y’,z, 1) = (x, y, z, 1) 
    ------------------------------(2) 


















1000
0000
0010
0001

P’h =Ph.Ppar,z         ------------------------------(3) 
 
Example1: Derive the general transformation of parallel projection onto the xy-plane 
in the direction of projection d=aI+bJ+cK. 
 
Solution: The general transformation of parallel projection onto the xy-plane in the 

direction of projection d=aI+bJ+cK, is derived as follows(see Figure a): 
 
             Let P(x,y,z) be an object point, projected to P’(x’,y’,z’) onto the z’=0 plane. 
             From Figure (a) we see that the vectors d and PP’ have the same direction. 

This means that    
 

          PP’=k.d , comparing components, we have: 
                   x’-x=k.a                     
       y’-y=k.b          
                   z’-z=k.c  
 
             Since z’=0 on the projection plane, we get k=-z/c. 
             Thus, 
                    x’=x-a.z/c                                              

       y’=y-b.z/c                                            
                    z’=0                                                                         

P’ (x’, y’, 0)

0 

z

y 

V= aI + bj +ck  
 P (x, y, z)  
 
 

     
 
 
 
 x 
 

Figure (a) 
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In terms of homogeneous coordinates, this equation can be written as:  
 
                   

(x’,y’,z’1) = (x, y, z, 1)  ------------------------------(4) 



















−−
1000
00//
0010
0001

cbca

 
That is,  P’h =Ph.Ppar,z    , where Ppar,z  is the parallel projection with the direction of 
projection d along the unit vector k. 
 
Example 2: Derive the general transformation for parallel projection onto a given 
view plane, where the direction of projection d=aI+bJ+cK is along the normal                    
N=n1I+n2J+n3K with the reference point R0(x0,y0,z0). 
 
Solution: The general transformation for parallel projection onto the xy-plane in the  
     direction of projection Figure (b) 

v = a I + bJ + ck, denoted by P par, V, N, Ro, consists of the following steps: 
 

1)  Translate the view reference point Ro of the view plane to the origin, by T-Ro 
2)  Perform an alignment transformation An so that the view normal vector N of the 

view points in the direction K of the normal to the xy-plane. The direction of 
projection vector V is transformed to new vector V’ = AnV. 

3)  Project onto the xy-plane using P par, v’ 
4)  Align k back to N, using An. 
5)  Translate the origin back to Ro, by TRo 

 
z 

N = n1I + n2J + n3k  k View plane 
 

 

 

 

 V = aI +bJ +ck 
P’(x’,y’,z’)  

x 

o
y 

 R0 ’(x0, y0, z0) 

P(x,y,z) 

 

 

 
  Figure (b) 

 

 
So 
Ppar, V, N, Ro = T–Ro AN

–1 . Ppar, v’. An. TRo 
 

= 
  


















−−− 1
0100
0010
0001

000 zyx


























λλ

−−λ

1000

0
N
n

N
n

N
n

0
nn

0

0
nn

N
nn

N

321

23

3121
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





















−−

−

1000

00

001

0001

c
b

c
a

c
a

2

31 2 2

1 3 32

0 0
|N| |N|

0
|N| |N|

0
| N| |N| |N|
0 0 0

n

nn n n

n n nn

λ

λ

λ

 
 
 
 −
 
 
 −
 
 
 
 1

0 0 0

1 0 0 0
0 1 0 0
0 0 1 0

1x y z

 
 
 
 
  
 

 

where λ =  
 

2
3

2
2 nn +  and λ ≠ 0. 

After multiplying all the matrices, we have: 
 

P par, V, N, R0 = ---------------------------(5) 



















−−−
−−−
−−−

100

3133

2212

1111

.
0
0
0

ddocbdad
cndbnan

cnbndan
cnbnand

 
Where  d0 = n1 x0 + n2 y0 + n3 z0 and 

d1 = n1a + n2b + n3c 
 

Note: Alignment transformation, An, refer any book for computer graphic. 
 
2.2.1.1   Orthographic and Oblique Projections 
 
Orthographic projection is the simplest form of parallel projection, which is 
commonly used for engineering drawings. They actually show the ‘true’ size and 
shape of a single plane face of a given object. 
 
If the direction of projection d=(d1,d2,d3)has the direction of view plane normal N (or 
d is perpendicular to view plane), the projection is said to be orthographic. Otherwise 
it is called Oblique projection. The Figure 6 shows the orthographic and oblique 
projection.  
 
We can see that the orthographic (perpendicular) projection shows only front surface 
of an object, which includes only two dimensions: length and width. The oblique 
projection, on the other hand, shows the front surface and the top surface, which 
includes three dimensions: length, width, and height. Therefore, an oblique 
projection is one way to show all three dimensions of an object in a single view 

 
Figure 6: Orthographic and oblique projection 
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Orthographic projections are projections onto one of the coordinate planes x=0, y=0or 
z=0. The matrix for orthographic projection onto the z=0 plane (i.e. xy-plane) is:   
 

Ppar,z =  ------------------------------(6) 



















1000
0000
0010
0001

 
Note that the z-column (third column) in this matrix is all zeros. That is for 
orthographic projection onto the z=0 plane, the z-coordinates of a position vector is 
set to zero. Similarly, we can also obtain the matrices for orthographic projection onto 
the x=0 and y=0 planes as: 
 

Ppar,x = 
  ------------------------------(7) 


















1000
0100
0010
0000

and 

Ppar,y =  ------------------------------(8)



















1000
0100
0000
0001

 

 

For example, consider the object given in Figure 6(a). The orthographic projections of 
this object onto the x=0, y=0 and z=0 planes from COP at infinity on the +x-, +y- and 
+z-axes are shown in Figure 7 (b)-(d).      
 

y  
         
 

x  
 
 
 
 
 
 x 

z 
 

Figure 7(a)                                                                       Figure 7(b) 
z 

 
 
 
 
 
 
 
 
    
 
 
          

 
Figure 7(c)                                     Figure 7(d) 

y 

z 

y 

x 



 

 

53

Viewing 
Transformations 

 

 

 
A single orthographic projection does not provide sufficient information to visually 
and practically reconstruct the shape of an object. Thus multiple orthographic 
projections are needed (known as multiview drawing). In all, we have 6 views: 
 
1)  Front view 
2)  Right-side view 
3)  Top-view 
4)  Rear view 
5)  Left-side view 
6)  Bottom view 
 
The Figure 8 shows all 6 views of a given object.  
 

 
Figure 8: Multiview orthographic projection 

 
The front, right-side and top views are obtained by projection onto the z=0, x=0 and 
y=0 planes from COP at infinity on the +z-, +x-, and +y-axes. 
 
The rear, left-side and bottom view projections are obtained by projection onto the 
z=0, x=0, y=0 planes from COP at infinity on the –z-, -x and –y-axes(see Figure 8). 
All six views are normally not required to convey the shape of an object. The front, 
top and right-side views are most frequently used. 
 
The direction of projection of rays is shown by arrows in Figure 9. 

+ y  
 
 
 
 
 
        
 
               
              
 
 
 
 
                              

Figure 9: Direction of projection of rays in multiview drawing 
front

Top 

rearLeft-side 

right-side

– z

z 

x

– y 

– x 

 
 



 

 54

Transformations 
 

 

The projection matrices for the front, the right-side and top views are given by: 
Pfront = Ppar,z=diag(1,1,0,1) 
Pright = Ppar,x=diag(0,1,1,1) 

 Ptop   = Ppar,y=diag(1,0,1,1) 
 
It is important to note that the other remaining views can be obtained by combinations 
of reflection, rotation and translation followed by projection onto the z=0 plane from 
the COP at infinity on the +z-axis. For example: the rear view is obtained by 
reflection through the z=0 plane, followed by projection onto the z=0 plane. 
 
 Prear=Mxy. Ppar,z 
           

           =     =     -------------------------(9) 



















−
1000
0100
0010
0001



















1000
0000
0010
0001



















1000
0000
0010
0001

 
Similarly, the left-side view is obtained by rotation about the y-axis by +900, followed 
by projection onto the z=0 plane. 
  
Pleft=[Ry] 90

0.Ppar,z 
 

= 

















 −

1000
090cos090sin
0010
090sin090cos

     


















1000
0000
0010
0001

= ------------------(10) 



















1000
0001
0010
0000

 
And the bottom view is obtained by rotation about the x-axis by -900, followed by 
projection onto the z=0 plane. 
 
 Pbottom=[Rx] 90

0.Ppar,z 
          

  =  =  -----------(11) 



















−−−
−−

1000
0)90cos()90sin(0
0)90sin()90cos(0
0001



















1000
0000
0010
0001



















1000
0010
0000
0001

 
Example 3: Show all the six views of a given object shown in following Figure. The 
vertices of the object are A(4,0,0), B(4,4,0), C(4,4,8), D(4, 0, 4), E (0,0,0), F(0,4,0), 
G(0,4,8), H(0,0,4). 
 
Solution: We can represent the given object in terms of Homogeneous-coordinates of 
its vertices as: 

V= [ABCDEFGH] =         

H
G
F
E
D
C
B
A

































1400
1840
1040
1000
1404
1844
1044
1004

 
Figure (c) 
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(1) If we are viewing from the front, then the new coordinate of a given object can be 

found as: 
 
P’n,z = Pn. Pfront 

 

H'
G'
F'
E'
D'
C'
B'
A'

































18'8'
17'7'
16'6'
15'5'
14'4'
13'3'
12'2'
11'1'

yx
yx
yx
yx
yx
yx
yx
yx

= .  =  

































1400
1840
1840
1000
1404
1844
1044
1004



















1000
0000
0010
0001

H'
G'
F'
E'
D'
C'
B'
A'

































000
1040
1040
1000
1004
1044
1044
1004

 
from matrix, we can see that 
A′ = D′, B′ = C′, E′ = H′, F′ = G′, Thus we can see only C′D′G′H′ 
as shown in Figure d 

Figure  e 

 
        

 
 
       
      
 
         

D′ H′ 

C′G′ 

x

y 

Figure d 
 

(2) If we are viewing from right-side, then 
 

P’n,x = V. Pright = . =  

H
G
F
E
D
C
B
A

































1400
1040
1040
1000
1404
1844
1044
1004



















1000
0100
0010
0000
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


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


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






















1400
1840
1040
1000
1400
1840
1040
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Here, we can see that A’ =E’, B’ = F’, C’ = G’ and D’ = H’. 
Thus, we can see only A’B’C’D’ as shown in Figure e. 
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(3) if we are viewing from top, then 

P’n,y = Pn. Ptop = .  =  

H
G
F
E
D
C
B
A






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








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Here, we can see that A’ = B’, E’ = F’, C’ ≠ D’ and G’ ≠ H’ 
Thus we can see only the square B’F’G’C’ but the line H’D’ is hidden an shown in 
Figure f. 
   
       
      
                 
    
                 
 
               
                

Figure f 

B′ F′ 

H′ D′ 

C′ 
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G′
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Similarly we can also find out the other side views like, rear left-side and bottom 
using equation – 1, 2, 3 
 

 Check Your Progress 1 
 
1) Define the following terms related with Projections with a suitable diagram: 
  
    a) Center of Projection (COP) 
    b) Plane of projection/ view plane 
    c) Projector 
    d) Direction of projection 

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

……………………………………………………………………………………… 

2)  Categories the various types of parallel and perspective projection. 

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

……………………………………………………………………………………… 
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3) In orthographic projection  
    a) Rays intersect the projection plane. 
    b) The parallel rays intersect the view plane not perpendicularly. 
    c) The parallel rays intersect the view plane perpendicularly. 
    d) none of these 

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

……………………………………………………………………………………… 

 
Oblique projection 
 
If the direction of projection d=(d1,d2,d3) of the rays is not perpendicular to the view 
plane(or d does not have the same direction as the view plane normal N), then the 
parallel projection is called an Oblique projection (see Figure 10).   
 

view plane 

B

A

N

d
y Direction of projection

A′

B′

x

 Direction of projection 
 

),,( 321 dddd =  
 
    
  view plane 
 

z    
 
 
 
Figure 10 (a): Oblique projection           Figure 10 (b): Oblique projection 
 
In oblique projection only the faces of the object parallel to the view plane are shown 
at their true size and shape, angles and lengths are preserved for these faces only. 
Faces not parallel to the view plane are discarded. 
 
In Oblique projection the line perpendicular to the projection plane are foreshortened 
(shorter in length of actual lines) by the direction of projection of rays. The direction 
of projection of rays determines the amount of foreshortening. The change in length of 
the projected line (due to the direction of projection of rays) is measured in terms of 
foreshortening factor, f. 
 
Foreshortening factors w.r.t. a given direction 
  
Let AB and CD are two given line segments and direction of projection d=(d1,d2,d3). 
Also assumed that AB║CD║d . Under parallel projection, let AB and CD be 
projected to A’B’ and C’D’, respectively.  
 
Observation: 
i) A’B’║C’D’ will be true, i.e. Parallel lines are projected to parallel lines, under 

parallel projection. 
ii) |A’B’| ⁄ |AB| ═ |C’D’| ⁄ |CD| must be true, under parallel projection. 
 
This ratio (projected length of a line to its true length) is called the foreshortening 
factor w.r.t. a given direction. 
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Mathematical description of an Oblique projection (onto xy-plane)  
 
In order to develop the transformation for the oblique projection, consider the  
Figure 10. This figure shows an oblique projection of the point A (0, 0, 1) to position 
A’(x’,y’,0) on the view plane (z=0 plane). The direction of projection d=(d1,d2,d3). 
 
Oblique projections (to xy-plane) can be specified by a number f and an angle θ. The 
number f, known as foreshortening factor, indicates the ratio of projected length 
OA’of a line to its true length. Any line L perpendicular to the xy-plane will be 
foreshortened after projection.  
 
θ is the angle which the projected line OA’(of a given line L perpendicular to xy-
plane) makes with the positive x-axis. 
 
The line OA is projected to OA’. The length of the projected line from the origin 
=|OA’| 
 
 

Figure 11: Oblique projection
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o 
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A (0, 0, 1) 
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Thus, foreshortening factor, f=|OA’|/|OA|=|OA’|, in the z-direction 
From the triangle OAP’, we have, 
 
OB=x’=f.cosθ 
BA’=y’=f.sinθ 
 
When f = 1, then obligue projection is known as Cavalier projection  
 
Given θ = 45°, then we have 
 

Pcav = 



















1000
00
0010
0001

2/12/1
 

 
When f = ½ then obligue projection is called a cabinet projection. 
 
 
Here θ = 30° (Given), we have 
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 Pcab = 
3 4 1/ 4

1 0 0
0 1 0

/ 0
0 0 0

 
 
 
 
  
 

0
0

0
1

 

 
we can represent a given unit cube in terms of Homogeneous coordinates of the 
 

 vertices as:V = [A B C D E F G H] =  

H
G
F
E
D
C
B
A

































1111
1101
1100
1110
1010
1011
1001
1000

 
i) To draw the cavalier projection, we find the image coordinates of a given unit cube 

as follows: 

P’ = V. Pcav = . 

A
B
C
D

E
F
G
H

0 0 0 1
1 0 0 1
1 1 0 1
0 1 0 1

0 1 1 1
0 0 1 1
1 0 1 1
1 1 1 1

 
 
 
 
 
 
 
 
 
 
  

1 0 0
0 1 0

1/ 2 1/ 2 0 0
0 0 0

0
0

1

 
 
 
 
 
 

 = 

H'
G'
F'
E'
D'
C'
B'
A'

































++

+

+

102/21(2/21(
102/22/21(
102/22/2

10
2

2
1(2/2

1010
1011
1001
1000

 

 
Hence, the image coordinate are: 
 
A’ = (0, 0, 0), B’ = (1, 0, 0), C’ = (1, 1, 0), D’ = (0, 1, 0) E’ = (√2/2 , 1 + √2/2, 0) 
F’ = (√2/2, √2/2, 0), G’ = ( 1 + √2/2, √2/2, 0), H’ = (1 + √2/2, 1 + √2/2, 0) 
 
Thus, cavalier projection of a unit cube is shown in Figure 11(a). 
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To determine projection matrix for oblique projection, we need to find the direction 
vector d. Since vector PP’and vector d have the same direction. Thus, PP’=d  
 
Thus, x’– 0=d1= f.cosθ 
           y’– 0=d2= f.sinθ 
          z’–1=d3 
 
As z’=0 on the xy-plane, d3 =  –1,  
 
Since, Oblique projection is a special case of parallel projection, thus, we can 
transform the general transformation of parallel projection for Oblique projection as 
follows: 
 

POblique =  = -----------------(12) 



















−−
0000
00//
0010
0001

3231 dddd


















1000
00sin.cos.
0010
0001

θθ ff

 
Where, f=foreshortening factor, i.e., the projected length of the z-axis unit vector.  
If β is the angle  
 
Between the Oblique projectors and the plane of projection then, 
                 1/f=tan (β) , i.e., f= cot(β)    ------------- (13) 
             
θ=angle between the projected line with the positive x-axis. 
 
 Special cases: 
 
1) If f=0, then cot (β)=0 that is β=900 , then we have an Orthographic projection. 
2) If f=1, the edge perpendicular to projection plane are not foreshortened, then 

β=cot-1 (1)=450 and this Oblique projection is called Cavalier projection. 
3) If f=1/2 (the foreshortening is half of unit vector), then β=cot-1 (1/2)=63.4350 and 

this Oblique projection is called Cabinet projection. 
 
Note: The common values of θ are 30° and 45°. the values of  (180° – θ) is also 

acceptable.  
 
The Figure 12 shows an Oblique projections for foreshortening factor 
f=1,7/8,3/4,5/8,1/2, with θ=450     
 
  
 
 
 
 
 
  
 
Figure 12: Oblique projections for f=1,7/8,3/4,5/8,1/2, with θ=450 (from left to right) 
 
Example4: Find the transformation matrix for a) cavalier projection with θ=450 , and  

b) cabinet projection with θ=300  c) Draw the projection of unit cube for 
each  transformation. 

 
Solution: We know that cavalier and cabinet projections are a special case of an 
oblique projection. The transformation matrix for oblique projection is: 
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Pobligue = 
  


















1000
10θ.sinθ.cos
0010
0001

ff

 
(ii) To draw the cabinet projection, we find the image coordinates of a unit cube as: 
 

P’ V. Pcab = 

A'
B'
C'
D'

E'
F'
G'
H' 




























+
+

104/5)4/31(
004/1)4/31(
104/14/3
104/54/3

1010
1011
1001
1000

 

 
Hence, the image coordinates are: 
A’ (0, 0, 0), B’ = (1,0,0), C’ = (1, 1, 0), D’ = (0, 1, 0), E’ = (√3/4, 5/4, 0) 
F’ = (√3/4, 1/4, 0), G’ = (1 + √3/4, 1/4, 0), H’ = (1 + √3/4, 5/4, 0) 
 
The following Figure (g) shows a cabinet projection of a unit cube. 
 
 

Figure (g) 
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2.2.1.2   Isometric Projection 
 
 There are 3 common sub categories of Orthographic (axonometric) projections: 
 
1) Isometric: The direction of projection makes equal angles with all the three 

principal axes. 
2) Dimetric: The direction of projection makes equal angles with exactly two of the 

three principal axes. 
3) Trimetric: The direction of projection makes unequal angles with all the three 

principal axes. 
 
Isometric projection is the most frequently used type of axonometric projection, which 
is a method used to show an object in all three dimensions in a single view. 
Axonometric projection is a form of orthographic projection in which the projectors 
 are always  perpendicular  to  the  plane  of  projection. However, the object itself, 
rather than the projectors, are at an angle to the plane of projection.  
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Figure13 shows a cube projected by isometric projection. The cube is angled so that 
all of its surfaces make the same angle with the plane of projection. As a result, the 
length of each of the edges shown in the projection is somewhat shorter than the 
actual length of the edge on the object itself. This reduction is called foreshortening. 
Since, all of the surfaces make the angle with the plane of projection, the edges 
foreshorten in the same ratio. Therefore, one scale can be used for the entire layout; 
hence, the term isometric which literally means the same scale.  
 
Construction of an Isometric Projection 
 
In isometric projection, the direction of projection d = (d1,d2,d3) makes an equal angles 
with all the three principal axes. Let the direction of projection d = (d1,d2,d3) make  
equal angles (say α) with the positive side of the x,y, and z axes(see Figure 13). 
 
Then 
i.d=d1=|i|.|d|.cosα  => cosα=d1/|d|      
similarly 
d2=j.d=|j|.|d|.cosα  => cosα=d2/|d|               
d3=k.d=|k|.|d|.cosα  => cosα=d3/|d| 
         
so cosα=d1/|d| = d2/|d| = d3/|d|      

 d1= d2 = d3  is true                                             
we choose d1=d2=d3=1                      
             

Figure 13 

α
α 

α 

d=(d1,d2,d3)
Z 

X

Y
Thus, we have d =(1, 1, 1) 
 
Since, the projection, we are looking for is an isometric projection => orthographic 
projection, i.e, the plane of projection, should be perpendicular to d, so d = n = (1,1,1). 
Also, we assume that the plane of projection is passing through the origin. 
 

 We know that the equation of a plane passing through reference point 
R(x0,y0,z0) and having a normal N = (n1,n2,n3) is: (x – x0).n1 + (y – y0).n2 + 
(z –z0).n3=0            -------------------------(14) 

 
Since (n1,n2,n3)=(1,1,1) and 

          (x0,y0,z0)=(0,0,0) 
From equation (14), we have x + y + z = 0 
Thus, we have the equation of the plane: x + y + z = 0 and d = (1,1,1)   
 
Transformation for Isometric projection 
 
Let P(x,y,z) be any point in a space.  Suppose a given point P(x,y,z) is projected to 
P’(x’y’,z’) onto the projection plane x + y + z = 0. We are interested to find out the 
projection point P’(x’,y’,z’). 
 
The parametric equation of a line passing through point P(x, y, z) and in the direction 
of d (1, 1, 1) is: 
 
P + t.d = (x, y, z) + t. (1,1,1) = (x + t, y + t, z + t) is any point on the line, where  
– ∞< t < ∞. The point P’ can be obtained, when  t = t*.  
Thus P’=(x’,y’,z’)=(x + t*,y + t*,z + t*), since P’ lies on x + y + z = 0 plane. 
 

 (x + t*)+(y + t*) + (z + t*)=0 
 3.t*=-(x + y + z) 
 t*=-(x + y + z)/3 should be true. 
 x’= (2.x – y – z)/3 ,  y’=(–x +2.y – z)/3 ,  z’=(– x – y +2.z)/3 
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Thus, P’=(x’,y’,z’)=[(2.x –y–z)/3, (–x +2.y– z)/3, (-x-y+2.z)/3]   --------------------(15) 
In terms of homogeneous coordinates, we obtain     

 (x’, y’, z, 1) = (x, y, z, 1) 



















−−
−−

−

1000
0323131
0313231
0313132

      

                                                    
Note:  We can also verify this Isometric transformation matrix by checking all the 
foreshortening factors, i.e., to check whether all the foreshortening factors (fx, fy, fz) 
are equal or not. Consider the points A,B and C on the coordinate axes (see Figure14). 

y  
 
 
                    
     
 
                    
 
 

 
Figure 14 

A

B 

C 

(0, 0, 1) 

(0, 1, 0) 

(0, 1, 0) 

x 
z 

 
i)  Take OA, where O=(0,0,0) and A (1,0,0). Suppose O is projected to O’ and A is 

projected to A’ 
    Thus, by using equation (15), we have O’=(0,0,0) and A’=(2/3,-1/3,-1/3). 
    So |O’A’| = 2)3/2( +(-1/3)2 +(-1/3)2  = 3/2  = fx       ------------(16) 
 
ii)  Take OB, where O = (0,0,0) and B (0,1,0). Suppose O is projected to O’ and B is 

projected to B’. Thus by using equation (15), we have O’=(0,0,0) and  
B’= (-1/3,2/3,-1/3). 

    So |O’B’| = 2)3/1(−  +(2/3)2 +(-1/3)2  = 3/2  = fy              -------------(17) 
 
iii)  Take OC, where O=(0,0,0) and C(0,0,1). Suppose O is projected to O’ and C is 

projected to C’ 
 
Thus, by using equation(15), we have O’=(0,0,0) and C’=(-1/3,-1/3,2/3). 
 
So |O’C’|=√(-1/3)2 +(-1/3)2 +(2/3)2  = √2/3=fz      --------------(18)                 

 
Thus, we have fx=fy=fz, which is true for Isometric projection. 
 
Example 5: Obtain the isometric view of a cuboid, shown in figure. The size of 
cuboid is 10x8x6, which is lying at the origin.  
 
Solution: The given cuboids can be represented  
in terms of Homogeneous coordinates 
of vertices as shown in Figure (h): 

Figure (h) 
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V = [A B C D E F G H] =  

H
G
F
E
D
C
B
A

































1600
1680
1080
1000
16810
16810
10810
10010

 
To draw an Isometric projection, we find the image coordinate of a given cuboid as 
follows: 

 P’ = V. PISO =  .  =  

































1600
1680
1080
1000
16010
16810
10810
10010



















−−
−−
−−

3000
0211
0121
0112

H'
G'
F'
E'
D'
C'
B'
A'

































−−
−

−−

−
−
−
−−

31266
341014
38168
3000
321614
3606
318812
3101020

 =  

































−−
−
−

−
−
−
−−

10.40.20.2
133.133.366.4
133.133.566.2
1000
1`66.033.566.4
10.202
10.666.20.4
133.333.366.6

 
Thus, by using this matrix, we can draw an isometric view of a given cuboids. 
 

  Check Your Progress 2 
  
 1)   When all the foreshortening factors are different, we have 

a) Isometric b) Diametric c) Trimetric Projection d) All of these. 

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

…………………………………………………………………………………… 

2) Distinguish between Orthographic and Oblique parallel projection. 

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

…………………………………………………………………………………… 
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3) What do you mean by foreshortening factor. Explain Isometric, Diametric and 
Trimetric projection using foreshortening factors. 

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

…………………………………………………………………………………… 

4) Show that for Isometric projection the foreshortening factor along x, y and z-axes 
must be 3/2 , i.e. fx = fy = fz = 3/2  

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

…………………………………………………………………………………… 

 5)    Consider a parallel projection with the plane of projection having the normal  
        (1,0,–1) and passing through the origin O(0,0,0) and having a direction of  
        projection d = (–1,0,0). Is it orthographic projection? Explain your answer with  
         reason. 

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

…………………………………………………………………………………… 

 6)    Compute the cavalier and cabinet projections with angles of 450 and 300  
            respectively of a pyramid with a square base of side 4 positioned at the origin in  
        the xy-plane with a height of 10 along the z-axis.  

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

…………………………………………………………………………………… 

                    
2.2.2 Perspective Projections 
     
In a perspective projection the center of projection is at finite distance. This projection 
is called perspective projection because in this projection faraway objects look small 
and nearer objects look bigger. See Figure 15 and 16. 
 
In general, the plane of projection is taken as Z=0 plane. 
 
Properties 
 
1)  Faraway objects look smaller. 
2)  Straight lines are projected to straight lines. 
3)  Let l1 and l2 be two straight lines parallel to each other. If l1 and l2 are also parallel 

to the plane of projection, then the projections of l1 and l2 (call them l’1 and l’2 ), 
will also be parallel to each other. 

4)  If l1 and l2 be two straight lines parallel to each other, but are not parallel to the 
plane of projection, then the projections of l1 and l2 (call them l’1 and l’2 ), will 
meet in the plane of  projection (see Figure 16). 
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Figure 15      Figure  16 
 
The infinite lines AB and PQ will be projected to the lines A’B’ and P’Q’ respectively 
on the plane of projection. That is all points of the line AB is projected to all points of 
the line A’B’. Similarly all points of the line PQ is projected to all points of the line 
P’Q’. But A’B’ and P’Q’ intersect at M and M is the projection of some point on the 
line AB as well as on PQ, but AB║ PQ, which implies that M is the projection of 
point at infinity where AB and PQ meet. In this case M is called a Vanishing point. 
 
Principle Vanishing point 
 
Suppose l1 and l2 be two straight lines parallel to each other, which are also parallel to 
x-axis. If the projection of l1 and l2 (call them l’1 and l’2 ), appears to meet at a point 
(point at infinity), then the point is called a Principle vanishing point w.r.t. the x-axis. 
Similarly we have Principle vanishing point w.r.t. the y-axis and z-axis. 
 
Remark 
 
A Perspective projection can have at most 3 Principle Vanishing points and at least 
one Principle vanishing point. 
 
To understand the effects of a perspective transformation, consider the Figure 17. 
This figure shows the perspective transformation on z=0 plane of a given line AB 
which is parallel to the z-axis. The A*B* is the projected line of the given line AB in 
the z=0 plane. Let a centre of projection be at (0,0,-d) on the z-axis. The Figure (A) 
shows that the line A’B’ intersects the z=0 plane at the same point as the line AB. It  
also intersects the z-axis at z=+d. It means the perspective transformation has 
transformed the intersection point. 
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Mathematical description of a Perspective Projection 

A perspective transformation is determined by prescribing a C.O.P. and a viewing 
plane. Let P(x,y,z) be any object point in 3D and C.O.P. is at E(0,0,-d). The problem 
is to determine the image point coordinates P’(x’,y’,z’) on the Z=0 plane (see  
Figure 18). 

x 
     

 

                         

                    

 

    

 
                                                                         

Figure 18 

z = 0 plane

E (0, 0 – d) 
y 

P (x, y, z)

. 
P’(x’,y’, z’) 

 

 

The parametric equation of a line EP, starting from E and passing through P is:   

E+t(P-E)  0<t<∞  

=(0,0,-d)+t[(x,y,z)-(0,0,-d)]  

=(0,0,-d)+t(x,y,z+d) 

=[t.x, t.y, -d+t.(z+d)]  

Point P’ is obtained, when t=t* 

That is, P’=(x’,y’,z’) =[t*.x, t*.y, -d+t*.(z+d)]  

Since P’ lies on Z=0 plane implies -d+t*.(z+d)=0 must be true, that is t*=d/(z+d) is 
true. 
 
Thus x’=t*.x=x.d/(z+d) 
         y’=t*.y=y.d/(z+d) 
         z’=-d+t*(z+d)=0 
 
thus P’=( x.d/(z+d), y.d/(z+d), 0) 
          =(x/((z/d)+1),y/((z/d)+1),0) 
in terms of Homogeneous coordinate system  P’=(x,y,0,(z/d)+1).  ---------(5) 
 
The above equation can be written in matrix form as: 
                                       

P(x’,y’,z’,1)=(x,y,z,1)   

1 0 0 0
0 1 0 0
0 0 0 1/
0 0 0 1

d

 
 

 
 

 


       =   [x,y,0,(z/d)+1]           ------------(1) 

  
That is, P’h = Ph.Pper,z       -----------------    (2) 
 
Where Pper,z  in equation (4.6) represents the single point perspective transformation 
on z-axis. 
 
The Ordinary coordinates are: 
[x’,y’,z’,1]=[x/(r.z+1),y/(r.z+1),0,1]   where r=1/d       ---------------- (3) 
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Vanishing Point 
 
The vanishing point is that point at which parallel lines appear to converge and vanish. 
A practical example is a long straight railroad track.  
 
To illustrate this concept, consider the Figure 17 which shows a perspective 
transformation onto z=0 plane. The Figure17 shows a Projected line A*B* of given 
line AB parallel to the z-axis. The center of projection is at (0,0,-d) and z=0 be the 
projection plane.  
 
Consider the perspective transformation of the point at infinity on the +z-axis, i.e., 
                                 

               [0,0,1,0]         =  (0,0,0,1/d) -------------- (4) 



















1000
d/1000

0010
0001

            
Thus, the ordinary coordinates of a point (x’,y’,z’,1)=(0,0,0,1), corresponding to the 
transformed point at infinity on the z-axis, is now a finite point. This means that the 
entire semi-infinite positive space(0<=z<=∞) is transformed to the finite positive half 
space 0<=z’<=d. 
 
Single point perspective transformation 
 
In order to derive the single point perspective transformations along x and y-axes, we 
construct Figures (19) and (20) similar to Figure 18, but with the corresponding 
COP’s at E(-d,0,0) and E(0,-d,0) on the negative x and y-axes respectively. 
 
 
 
 
 
 
 
 
 
 
               

        

P (x,y,z)

E (–d, 0, 0)

P (x,y,z)

x 

P’(x’,y’,z’) 

–x E (–d, 0, 0)

y

P’(x’,y’,z’)

y

Figure 19                                                                                                 Figure 20 z
 
 

The parametric equation of a line EP, starting from E and passing through P is:   

E+t(P-E)  0<t<∞  

=(-d,0,0)+t[(x,y,z)-(-d,0,0)]  

=(-d,0,0)+t[x+d,y,z] 

=[-d+t.(x+d), t.y, t.z]  

Point P’ is obtained, when t=t* 

That is, P’=(x’,y’,z’) =[-d+t*.(x+d), t*.y, t*.z]  

Since, P’ lies on X=0 plane implies -d+t*.(x+d)=0 must be true, that is t*=d/(x+d) is 
true. 
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


Thus, x’=-d+t*(x+d)=0 
         y’=t*.y=y.d/(x+d) 
         z’=t*.z=z.d/(x+d) 
thus P’=( 0, y.d/(z+d), z.d/(x+d)) 
          =(0,y/((z/d)+1), z/((x/d)+1)) 
 
in terms of Homogeneous coordinate system  P’=(0,y,z,(x/d)+1).  
 
The above equation can be written in matrix form as: 
 

P(x’,y’,z’,1)=(x,y,z,1)    =[0,y,z,(x/d)+1] 

0 0 0 1/
0 1 0 0
0 0 1 0
0 0 0 1

d 
 


 
 

 
                                                 =[0,y/((z/d)+1), z/((x/d)+1),1] -------- (5) 
 
That is, P’h = Ph.Pper,x  --------------------------------(6) 
 
Where Pper,z  in equation (5) represents the single point perspective transformation 
w.r.t. x-axis. 
 
Thus, the ordinary coordinates(projected point P’ of a given point P) of a single point 
perspective transformation w.r.t. x-axis is: 
 
(x’,y’,z’,1)= [0,y/((z/d)+1), z/((x/d)+1),1] has a center of projection at [-d,0,0,1] and a 
vanishing point located on the x-axis at [0,0,0,1] 
 
Similarly, the single point perspective transformation w.r.t. y-axis is therefore: 
 
 

P(x’,y’,z’,1)=(x,y,z,1)   

1 0 0 0
0 0 0 1/
0 0 1 0
0 0 0 1

d
 
 

 
 

 


   =[x,0,z,(y/d)+1] 

 
                                                =[x/((y/d)+1),0, z/((y/d)+1),1] 
 
That is, P’h = Ph.Pper,y   -----------------------------(7) 
 
Where Pper,y  in equation (5) represents the single point perspective transformation 
w.r.t. y-axis. 
 
Thus, the ordinary coordinates(projected point P’ of a given point P) of a single point 
perspective transformation w.r.t. y-axis is: 
 
(x’,y’,z’,1)=[x/((y/d)+1),0, z/((y/d)+1),1] has a center of projection at [0,-d,0,1] and a 
vanishing point located on the y-axis at [0,0,0,1]. 
 
Example 6: Obtain a transformation matrix for perspective projection for a given 
object projected onto x=3 plane as viewed from (5,0,0). 
 
Solution: Plane of projection: x = 3 (given)     
Let P (x, y, z) be any point in the space. We know the            
Parametric equation of a line AB, starting from A and passing  
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through B is           

 

Transformations 
  

x 

y 

x = 3 plane

3 

E (5, 0, 0) 

P (x,y,z)

P’(x’,y’z’)

Projection plane 

 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 

z Figure  i 

P (t) = A + t. (B – A), o < t < ∞       
 
So that parametric equation of a line starting from E (5,0,0)                     
and passing through P (x, y, z) is:      
  
E + t ( P – E) , o < t < ∞.        
=  (5, 0, 0) + t [(x, y, z) – (5, 0, 0)]                   
= (5, 0, 0) + [t (x – 5), t. y, t. z] 
= [t. (x – 5) + 5, t. y, t. z]. Assume 
 
 Point P’ is obtained, when t = t* 
 
∴ P’ = (x’, y’, z’) = [t* (x – 5) + 5, t*y, t*. z]    
                           
Since, P’ lies on x = 3 plane, so 
t* (x – 5) + 5 = 3 must be true; 

t* = 
5

2
−
−

x
 

P’ = (x’, y’, z’)  =  







−
−

−
−

5x
z.2,

5x
y.2,3  

  = 



 −
−

−
−

−
−

5
.2,

5
.2,

5 x
z

x
y

x
x


 153

 

 
In Homogeneous coordinate system 
 

P’ = (x’, y’, z’, 1) =  



 −−
−

−
− 1,

5
.2,

5
.2,

5
153

x
z

x
y

x
x


  

  = (3x – 15, – 2.y, – 2.z, x – 5)  --------------(1) 
In Matrix form: 

 (x’, y’, z’, 1) = (x, y, z, 1) -------------- (2) 



















−−
−
−

50015
0020
0020
1003
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Thus, equation (2) is the required transformation matrix for perspective view from  
(5, 0, 0). 
 
Example 7: Consider the line segment AB in 3D parallel to the z-axis with end points  

A (– 5,4,2) and B (5,-6,18). Perform a perspective projection on the X=0     
plane, where the eye is placed at (10,0,10). 

 
Solution: Let P (x, y, z) be any point in the space. 
 
The parametric equation of a line starting from E and passing through P is: 
 
             E + t. (P – E), o < t < 1. 
 = (10,0,10) + t. [(x, y, z) – (10, 0, 10)] 
 = (10, 0,10) + t [(x – 10)], y (z – 10)]  
 = (t. (x – 10) + 10, t. y, t (z – 10) + 10) 
 
Assume point P’ can be obtained, when t = t*                             
 
∴P’ = (x’, y’, z’) = (t* (x – 10) + 10, t*.y, t*. (z – 10) + 10) 
 
since point P’ lies on x = 0 plane      
 
 
 
 
 
 
 
 
 
 
 
 
 

 

x = 0 
plane 

E (10,0,10) z 

x

y 

P’ (x’, y’, z’) 

p (x, y, z) 

Figure j 
 
= t* (x – 10) + 10 = 0       

= t* = 
10

10
−
−

x
            

= P’ = (x’, y’, z’) = 




+

−
−−

−
− 10

10x
)10z(10,

10x
y.10,0                         

    









−
−

−
−

10x
z.10x.10,

10x
y.10,0         

     
In terms of Homogeneous coordinate system;               

P’ = (x’, y’, z’, 1) = 


















−

−

−

− 1,
1

10

,
1

10

,0
x

zx
x

y  = (0, – y, x – z, 1
10

−
x

) 
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In Matrix form 

 (x’, y’, z’, 1) = (x, y, z, 1)  ------------------(1) 



















−
−−

−

1000
1100
0010

100 10/1

 
This equation (1) is the required perspective transformation, which gives a coordinates 
of a projected point P' (x’, y’, z’) onto the x = 0 plane, when a point p (x, y, z) is 
viewed from E (10, 0, 10) 
 
Now, for the given points A (–5, 4, 2) and B (5, –6, 18), A’ and B’ are their projection 
on the x = 0 plane. 
 
Then from Equation (1). 

A’ = (x’1’ y’1, z’1, 1) = (– 5, 4, 2, 1).  



















−
−

−

1000
0100
0010

100 10/1

         

      = (0, – 4, – 7, 
10

5−
– 1) 

         = (0, – 4, – 7, 
10
15−

) 

         = (0, – 40, – 70, – 15) 

         = (0, 
15
70,

15
40

, 1) 

 
Hence x1’ = 0  ;  y1’ = 2.67  ;   z1’ = 4.67 

similarly  B’ = (x2’, y2’, z2’, 1) = (5, – 6, 18, 1) .  



















−
−

−

1000
0100
0010

100 10/1

            = (0, 60, – 130, – 5) 
 
       = (0, – 12, 26, 1) 
 
Hence x2’ = 0  ;  y2’ = – 12  ;   z2’ = 26 
 
Thus the projected points A’ and B’ of a given points A and B are: 
 
 A’ = (x1’, y1’z1’) = (0, 2.67, 4.67)    and      B’ = (x2’, y2’, z2’) = (0, – 12, 26, 1) 
 
 
Example 8: Consider the line segment AB in Figure k, parallel to the z-axis with end 
points A (3, 2, 4) and B (3, 2, 8). Perform a perspective projection onto the z = 0 plane 
from the center of projection at E (0, 0, – 2). Also find out the vanishing point. 
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Figure  k 
 

y 

B 

A Vanishing Point 
(0,0,2) 

B’ 

A’ 

B* 
A* 

E 

d = 2 

d = – 2 

(0,0, – 2) 

x 

 
 
Solution. We know that (from Equation (1)), the center of single point perspective 
transformation: of a point P (x, y, z) onto z = 0 plane, where center of projection is at 
(0, 0, – d) is given by: 

(x’, y’, z’, 1) = (x, y, z, 1) .  


















1000
d/1000
0010
0001

 P’n = Pn. Pper,z  ------------------------(I) 
 
Thus the perspective transformation of a given line AB to A* B* with d = 2 is given 
by: 

 V’n = Vn. Pper,z 

*B
*A

  = .  












1

1
*
1

*
2

*
1

*
1

*
1

*
1

zyx

zyx
B
A









1823
1423



















1000
5.0000
0010
0001

          =  
*B
*A









104.06.0
10667.01

 
Hence, the projected points of a given line AB is: 
 
 A* = (1, 0.667, 0) 
 B* = (0.6, 0.4, 0) 
 
The vanishing point is  (0, 0, 0). 
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Example 9: Perform a perspective projection onto the z = 0 plane of the unit cube, 
shown in Figure (l) from the cop at E (0, 0, 10) on the z-axis. 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 

 
 z 

x E

GH

D C

F 

BA

Figure (l) 
01:  Here center of projection 
 E = (0, 0, –d) = (0, 0, 10). 
 ∴ d = – 10 
 
we know that (from equation – 1), the single point perspective transformation of the 
projection with z = 0, plane, where cop is at (0, 0, –d) is given by: 
 

  (x,’, y,’ z’, 1) = (x, y, z, 1)  -----------(I) 



















1000
/1000
0010
0001

d

 
  Pn’ = P. Pper, z    --------------- (II) 
 
Thus the perspective transformation of a given cube v = [ABCDEFGH] to V’ = 
[A’B’C’D’E’F’G’H’] with d = – 10 is given by: 
 
 [V’] = [V] . [Pper, z] 

 
 

         = .  

































1010
1011
1001
1000
1110
1111
1101
1100



















−
1000
1.0000

0010
0001
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V’ = 
  =  
































1010
1011
1001
1000
9.0010
9.0011
9.0001
9.0000

H'
G'
F'
E'
D'
C'
B'
A'

































1010
1011
1001
1000
1011.10
1011.111.1
10011.1
1000

 
Thus the projected points of a given cube V =  [ABCDEFGH] are: 
A’ =(0, 0, 0), B’ = (1.11, 0, 0), C’ = (1.11, 1.11, 0), D’ = (0, 1.11, 0), E’ = (0, 0, 0) 
F’ = (1, 0, 0), G’ = (1, 1, 0) and H’ = (0, 1, 0). 
 

  Check Your Progress 3 
 
1)  Obtain the perspective transformation onto z = d plane, where the c. o. p. is at the 

origin. 

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

……………………………………………………………………………………… 

 
2)  Consider a cube given in example – 4, the cube can be centered on the z-axis by 

translating it –
2
1

units in the x y directions perform a single point perspective 

transformation onto the z = 0 plane, with c. o. p. at Zc = 10 on the z-axis. 

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

……………………………………………………………………………………… 

 
3)  A unit cube is placed at the origin such that its 3-edges are lying along the x, y 

and z-axes. The cube is rotated about the y-axis by 30°. Obtain the perspective 
projection of the cube viewed from (80, 0, 60) on the z = 0 plane. 

………………………………………………………………………………………

………………………………………………………………………………………

………………………………………………………………………………………

……………………………………………………………………………………… 

 
Two-Point and Three-Point Perspective transformations 
 
The 2-point perspective projection can be obtained by rotating about one of the 
principal axis only and projecting on X=0 (or Y=0 or Z=0) plane. To discuss the 
phenomenon practically consider an example for 3-point perspective projection (given 
below) some can be done for 2-point aspect. 
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Example 10: Find the principal vanishing points, when the object is first rotated w.r.t. 
the y-axis by – 30° and x-axis by 45°, and projected onto z = 0 plane, with the center 
of projection being (0, 0, – 5). 
 
Solution: Rotation about the y-axis with angle of rotation 
 θ = (– 30°) is  

 [Ry] = [Ry]θ = – 30 =  
















°−°−

°−−°

)30cos(0)30sin(
010

)30sin(0)30cos(

                 =
















− 2302/1
010
2/1023

 

Similarly Rotation about the x-axis with angle of Rotation φ 45° is: 

 [Rx] = [Rx]45° = 

























−
2

1
2

10

2
1

2
10

001
 

 

∴ [Ry].[Rx] = 
















− 2/302/1
010
2/102/3

. 
















− 2/12/10
2/12/10

001
 

       =
















−−

−

22/322/32/1
2/12/10
22/122/12/3

-----------------(1) 

 
Projection: Center of projection is E (0, 0, – 5) and plane of projection is z = 0 plane. 
 
For any point p (x, y, z) from the object, the Equation of the ray starting from E and 
passing through the point P is: 
 
  E + t (P – E), t > 0 
i.e.     (0, 0, –5) + t [(x, y, z) – (0, 0, –5)] 
 = (0, 0, – 5) + t (x, y, z + 5) 
 = (t.x, t. y, – 5 + t (z + 5) 
for this point to be lie on z = 0 plane, we have: 
 – 5 + t (z + 5) = 0 

 ∴ t = 
5

5
+z

 

∴ the projection point of  p (x, y, z) will be: 

 P’ = (x’, y’, z’) = 







++
0,

5
.5,

5
.5

z
y

z
x  

In terms of homogeneous coordinates, the projection matrix will become: 
 

  [P] = 

 05

-------------(2) 

















5000
1000
00
0005
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 ∴[Ry]. [Rx].[P] = 





















−−

−

1000
022/322/321
02/12/10
022/122/12/3

.  


















5000
1000
0050
0005

 

             = 



























−−

−

5000
22

30
22
35

2
5

2
10

2
50

22
10

22
5

2
35

 ----------------(3) 

  
Let (x, y, z) be projected, under the combined transformation (3) to (x’, y’, z’), then 
 

  (x’, y’, z’, 1) = (x, y, z, 1) 



























−−

−

5000
22

30
22
35

2
5

2
10

2
50

22
10

22
5

2
35

 

 

= x’ =  











+++











−

5
22
.3

222

.
2
5.

2
35

zyx

zx
 

 
 
and 

y’ = 























+++











−+

−

5.
22

3
222

.
22
35.

2
5.

22
5

zyx

zyx
 -----------(4) 

 
Case 1: Principal vanishing point w.r.t the x-axis.  
 
By considering first row of the matrix (Equation – (3)), we can claim that the principal 
vanishing point (w.r.t) the x-axis) will be: 
 

  
















 −

0,

22
1

22
5

,

22
1
2

35

 

i.e.,  (5 6 , – 5, 0)    -------------------(I) 
 
In order to varify our claim, consider the line segments AB, CD, which are parallel to 
the x-axis, where A = (0, 0, 0), B = (1, 0, 0), C = (1, 1, 0), D = (0, 1, 0) 
 
If A’, B’, C’, D’ are the projections of A, B, C, D, respectively, under the projection 
matrix (3), then 
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 A’ = (0, 0, 0), B’ = 


















+

−

+
0,

5
22

1
22
5

,
5

22
1

35  

 C’ = 




























++









+−









++

0,
5

2
1

22
1

2
5

22
5

,
5

2
1

22
1

2
35


  

 D’ = 




























+

0,
5

2
1

2/,0
 5   {Using Equation (4)} 

 A’ = (0,0,0) , B’ = 
,0,

2101
5,

2101
65












+
−

+  

 C’ = 








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0,

2103
5,

2103
 65  and 

 D’ = 




 +
0,

251
,0

 5  

 
Consider the line equation of A’B’: The parametric Equation is: 
 
  A’ + t (B’ – A’) 
 

i.e. (0, 0, 0) + t 










+
−

+
0,

2101
5,

2101
65  

 = 









+
−

+
0,

2101
.5,

2101
tt


 65  

 
we will verify that the vanishing point (I) lies on this line: 
 

i.e. 










+
−

+
0,

2101
.5,

2101
65 tt  = (5 6 , – 5,0) 

 

 = 65
2101

..
=

+
t 65  

 

and          
2101

5
+
− t  = – 5   -----------------(5)   

 
must be true for some ‘t’ value. 
 t = (1 + 10 2 ) 
 
then the equation (5) is true and hence (I) lies on the line A’B’. 
Similarly consider the line equation C’D’: The parametric Equation is: 
 
  C’ + s (D’ – C’)       i.e. 
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= 




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we have to verify that the vanishing point (I) lies on C’D’. 
 
i.e. we have to show 
 

 
























+
+

+
+

−
+

0,
)251(
)252(1

2103
5)s1(

2103
65 s  = (5 6 , – 5, 0) 

 
for some ‘s’ value This holds true if 

 65)1(
2103

65
=−

+
s  

and 










+
+

+
+ )251(

)252(1
2103

5 s  = – 5  ------------(6) 

 
must holds simultaneously for some ‘s’ value. 
 
If we choose s = –2 (1 + 5 2 ), then both the conditions of (6) satisfied 
∴(5 6 , –5, 0) lies on C’D’ 
 
= (5 6 , – 5, 0) is the point at intersection of A’B’ and C’D’. 
 (5 6 , – 5, 0) is the principal vanishing point w.r.t. the x-axis. 
 
Case 2: Principal vanishing point w.r.t  y-axis:- 
 
From the 2nd Row of the matrix (Equation (3)), the principal vanishing point w.r.t  
y-axis will be: 
 

 








2
1,0,

2
5,0  in homogeneous system. 

 
The vanishing point in Cartesian system is: 











0,

2/1
2/5,0  = (0, 5, 0)   ------------------------(II) 

 
similar proof can be made to verify our claim: 
 
Case 3: Principal vanishing point w.r.t z-axis: 
 
From the 3rd row of matrix equation (3), we claim that the principal vanishing point 

w.r.t z-axis will be: 








 −
−

22
3,0,

22
35,

2
5  in Homogeneous system. 
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In Cartesian system, the vanishing point is: 









































 −

− 0,

22
3

2
3

2
5

,

22
3

)2/5(  = 









−

− 0,5,
3

25    ------------------(III) 

 
A similar proof can be made to verify (III) 
 
General Perspective transformation with COP at the origin 
 
Let the given point P(x,y,z) be projected as P’(x’,y’,z’) onto the plane of projection. 
The COP is at the origin, denoted by O(0,0,0). Suppose the plane of projection 
defined by the normal vector N=n1I+n2J+n3K and passing through the reference point 
R0(x0,y0,z0). From Figure 21, the vectors PO and P’O have the same direction. The 
vector P’O is a factor of PO. Hence they are related by the equation: P’O = α PO, 
comparing components we have x’=α.x   y’=α.y   z’=α.z   we now find the value of α.
               
 
 

 
 
 
 
 
 
 
 
 
 

     

Figure  21 
0 (0, 0, 0) y 

z

p'(x’,y’,z’) 

N (n1, n2, n3) 

R0 (x0, y0, z0) 

p(x,y,z) 

 
 x 
 
We know that the equation of the projection plane passing through a reference point 
R0 and having a normal vector N=n1I+n2J+n3K is given by PR0.N=0, that is  
 
(x-x0,y-y0,z-z0).( n1,n2,n3)=0  i.e. n1.( x-x0)+ n2.( y-y0)+ n3.( z-z0)=0 ---------( ) 
 
since P’(x’,y’,z’) lies on this plane, thus we have: n1.( x’-x0)+ n2.( y’-y0)+ n3.( z’-z0)=0 
After substituting x’=α.x ;  y’=α.y ;  z’=α.z, we have : 
 
   α =(n1.x0+ n2.y0+ n3.z0)/(n1.x+ n2.y+ n3.z) = d0/(n1.x+ n2.y+ n3.z) 
 
This projection transformation cannot be represented as a 3x3 matrix transformation. 
However, by using the homogeneous coordinate representation for 3D, we can write 
this projection transformation as: 
 
                         d0     0      0     n1  
                         0    d0        0     n2 
      Pper,N,Ro=     0     0     d0    n3 
                         0       0      0     0 
 
Thus, the projected point P’h(x’,y’,z’,1) of given point Ph(x, y, z, 1) can be obtained as 
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 P’h = Ph. Pper,N, Ro = [x, y, z, 1]   -----------------(16) 



















0000
00

00
00

30

20

10

nd
nd
nd

= [d0.x, d0.y, d0z, (n1.x + n2.y + n3.z)] 
Where d0 = n1.x0 + n2.y0 + n3. z0.  
 
General Perspective transformation w.r.t. an arbitrary COP 
 
Let the COP is at C(a,b,c), as shown in Figure 22. 
 
From Figure 7, the vectors CP and CP’ have the same direction. The vector CP’ is a 
factor of CP, that is CP’=α.CP  
 
Thus, (x’-a)= α.(x-a)     z     
         (y’-b)= α.(y-b) 
         (z’-c)= α.(z-c)            -------------(17)                
 
N = (n1, n2, n3)  
          
  

  
 
 
 
 
                                                                        
 
 
 

Figure 22 

c (a,b,c)

y

z 

p(x,y,z)

p'(x’,y’,z’) 

N = (n1, n2, n3) 
R0(x0, y0, z0) 

x  
We know that the projection plane passing through a reference point R0(x0,y0,z0) and 
having a normal vector N= n1I+n2J+n3K, satisfies the following equation: 
 
n1.(x-x0)+n2.(y-y0)+n3.(z-z0)=0 
 
Since P’(x’,y’,z’) lies on this plane, we have: 
 
n1.(x’-x0)+n2.(y’-y0)+n3.(z’-z0)=0  
 
Substituting the value of x’, y’ and z’, we have: 
 
α= (n1.(x0-a)+n2.(y0-b)+n3.(z0-c))/( n1.(x-a)+n2.(y-b)+n3.(z-c)) 
  =((n1.x0+n2.y0+n3.z0)-(n1.a+n2.b+n3.c))/(n1.(x-a)+n2.(y-b)+n3.(z-c)) 
  =(d0-d1)/(n1.(x-a)+n2.(y-b)+n3.(z-c)) 
  =d/(n1.(x-a)+n2.(y-b)+n3.(z-c))  
 
Here, d=d0-d1= (n1.x0+n2.y0+n3.z0)- (n1.a+n2.b+n3.c) represents perpendicular 
distance from COP, C to the projection plane. 
 
In order to find out the general perspective transformation matrix, we have to proceed 
as follows: 
 
Translate COP, C(a,b,c) to the origin. Now, R’0=(x0-a,y0-b,z0-c) becomes the 
reference point of the translated plane.(but Normal vector will remain same). 
 
Apply the general perspective transformation Pper,N,R’o 
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Translate the origin back to C. 
 

        =     
       


















−−− 1cba
0100
0010
0001



















1nnn
0d00
00d0
000d

321


















1cba
0100
0010
0001

 

 =  ------------ (18) 



















−−−−
+

+
+

1000

3333

2222

1111

...
...

...
...

ddcdbda
ncndbnan
ncnbndan
ncnbnand

 
Where d = N.CR’ 0 = d0 – d1 = (n1. x0 + n2. Y0 + n3.z0) – (n1.a+n2.b +n3.c) 
       = n1. (x0 – a) + n2. (y0 – b) + n3. (z0 – c) 
 
And  d1 = n1.a + n2.b + n3.c 
 

Example 11:  Obtain the perspective transformation onto z = – 2 Plane, where the 
center of projection is at (0, 0, 18). 
 
Solution: Here centre of projection, C (a, b, c) = (0, 0, 18) 
 ∴ (n1, n2, n3) = (0, 0, 1) 

 
and Reference point R0 (x0, y0, z0) = (0, 0, – 2) 
 
∴ d0 = (n1x0 + n2.y0 + n3z0) = – 2 

     d1 = (n1.a + n2.b + n3. c) = 18 
 
we know that the general perspective transformation when cop is not at the origin is 
given by: 
 



















−−−−
+

+
+

1000

3333

2222

1111

...
...

...
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ddcdbda
ncndbnan
ncnbndan
ncnbnand

 

 

=  =  



















−
−

−
−

183600
1200
00200
00020



















−
−

−
−

1200
1200
00200
00020

 
Example 12:  Find the perspective transformation matrix on to z = 5 plane, when the 
c.o.p is at origin. 
 
Solution. Since z = 5 is parallel to z = 0 plane, the normal is the same as the unit 
vecter ‘k’. 
 
 ∴ (n1, n2, n3) = (0, 0, 1) 
 
and the Reference point R0 (x0, y0, z0) = (0, 0, 5) 
 
 d0 = n1. x0 + n2. y0 + n3. z0) = 5 
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we know the general perspective transformation, when cop is at origin is given by: 
 

  = 
  


















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  Check Your Progress 4 

 
1)  Determine the vanishing points for the following perspective transformation 

matrix: 



















0.303.73.5
0.208000.7
5.405.200
8.206.568.8

 

………………………………………………………………………………………

………………………………………………………………………………………

……………………………………………………………………………………… 

2)  Find the three-point perspective transformation with vanishing points at Vx = 5, Vy 
=5 and Vz = – 5, for a Given eight vertices of a cube A (0, 0, 1), B (1, 0, 1), C (1, 
1, 1) D (0, 1, 1), E (0, 0, 0), F (1, 0, 0), G (1, 1, 0), H (0, 1, 0). 

………………………………………………………………………………………

………………………………………………………………………………………

……………………………………………………………………………………… 

 

2.3    SUMMARY 
 

• Projection is basically a transformation (mapping) of 3D objects on 2D screen. 
• Projection is broadly categorised into Parallel and Perspective projections 

depending on whether the rays from the object converge at the COP or not. 
• If the distance of COP from the projection plane is finite, then we have 

Perspective projection. This is called perspective because faraway objects look 
smaller and nearer objects look bigger. 

• When the distance of COP from the projection plane is infinite, then rays from the 
objects become parallel. This type of projection is called parallel projection. 

• Parallel projection can be categorised according to the angle that the direction of 
projection makes with the projection plane. 

• If the direction of projection of rays is perpendicular to the projection plane, we 
have an Orthographic projection, otherwise an Oblique projection. 

• Orthographic (perpendicular) projection shows only one face of a given object, 
i.e., only two dimensions: length and width, whereas Oblique projection shows all 
the three dimensions, i.e. length, width and height. Thus, an Oblique projection is 
one way to show all three dimensions of an object in a single view. 

• In Oblique projection the line perpendicular to the projection plane are 
foreshortened (Projected line length is shorter then actual line length) by the 
direction of projection of rays. The direction of projection of rays determines the 
amount of foreshortening.  

• The change in length of the projected line (due to the direction of projection of 
rays) is measured in terms of foreshortening factor, f, which is defined as the ratio 
of the projected length to its true length. 
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• In Oblique projection, if foreshortening factor f=1, then we have cavalier 
projection and if f=1/2 then cabinet projection. 

• The plane of projection may be perpendicular or may not be perpendicular to the 
principal axes. If the plane of projection is perpendicular to the principal axes then 
we have multiview projection otherwise axonometric projection. 

• Depending on the foreshortening factors, we have three different types of 
Axonometric projections: Isometric (all foreshortening factors are equal), 
Dimetric (any two foreshortening factors equal) and Trimetric (all foreshortening 
factors unequal). 

• In perspective projection, the parallel lines appear to meet at a point i.e., point at 
infinity. This point is called vanishing point. A practical example is a long straight 
railroad track, where two parallel railroad tracks appear to meet at infinity. 

• A perspective projection can have at most 3 principal vanishing points (points at 
infinity w.r.t. x, y, and z-axes, respectively) and at least one principle vanishing 
point. 

• A single point perspective transformation with the COP along any of the 
coordinate axes yields a single vanishing point, where two parallel lines appear to 
meet at infinity. 

• Two point perspective transformations are obtained by the concatenation of any 
two one-point perspective transformations. So we can have 3 two-point 
perspective transformations, namely Pper-xy, Pper-yz, Pper-xz . 

• Three point perspective transformations can be obtained by the composition of all 
the three one-point perspective transformations.  

 

2.4 SOLUTIONS/ANSWERS 
 
Check Your Progress 1 
 
1)  Consider a following Figure m, where a given line AB is projected to A’ B’ on a 

projection plane. 
 
 
 
 
 
 
 
< 

Center of projection

Projector 

A 

B’ 

A’

B 
 
 
 

Plane of projection Figure m 
 
a)  Center of projection (cop): In case of perspective projection, the rays from an 

object converge at the finite point, known as center of projection (cop). In  
Figure 1, 0 is the center of projection, where we place our eye to see the projected 
image on the view plane. 

 
b) Plane of projection:  Projection is basically a mapping of 3D-object on to 2D-

screen. Here 2D-screen, which constitutes the display surface, is known as plane 
of projection/view plane. That a plane ( or display surface), where we are 
projecting an image of a given 3D-object, is called a plane of projection/view 
plane. Figure 1 shows a plane of projection where a given line AB is projected to 
A’B’. 
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c)  Projector:  The mapping of 3D-objects on a view plane are formed by projection 
rays, called the projectors. The intersection of projectors with a view plane form 
the projected image of a given 3D-object (see Figure 1). 

 
d)  Direction of projection:  In case of parallel projection, if the distance of cop from 

the projection plane is infinity, then all the rays from the object become parallel 
and will have a direction called “direction of projection”. It is denoted by d = 
(d1,d2,d3), where d1, d2 and d3 make an angle with positive side of x, y and z axes, 
respectively (see Figure n) 

 
 
        
 
 
 
 
 
 

Figure n γ

α

β

d = (d1,d2,d3) 

y 

xz 
 
The Categorisation of parallel and perspective projection is based on the fact whether 
coming from the object converge at the cop or not. If the rays coming from the object 
converges at the centre of projection, then this projection is known as perspective 
projection, otherwise parallel projection. 
 
Parallel projection can be categorized into orthographic and Oblique projection. 
 
A parallel projection can be categorized according to the angle that the direction of 
projection d makes with the view plane. If d  is r⊥ to the view plane, then this parallel 
projection is known as orthographic, otherwise Oblique projection. 
Orthographic projection is further subdivided into multiview view plane parallel to the 
principal axes) 
 
Axonometric projection (view plane not to the principal axes). 
 
Oblique projection is further subdivided into cavalier  
and canbinet and if f = ½ then cabinet projection. 

Projection  
The Figure O shows the  
Taxonomy of projections: 

Figure o Trimetric Dimetric Isometric 

Cabinet Cavalier AxonometricMultiview 

Oblique OrthographicThree-point Two-point Single-point 

Parallel Perspective 
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3) C 
 
Check Your Progress 2 
 
1)  C 
 
2)  We know that, the parallel projections can be categorized according to the angle 

that the direction of projection d  = (d1, d2, d3) makes with the projection plane. 
Thus, if direction of projection d  is ⊥r to the projection plane then we have 
orthographic projection and if the d  is not ⊥r to the projection plane then we have 
oblique projection. 

 
3)  The ratio of projected length of a given line to its true length is called the 

foreshortening factor w.r.t. a given direction. 
Let AB is any given line segment 
Also assume AB || a

r
. 

 
Then Under parallel projection, AB is projected to A’B’; The change in the length 
of projected line is measured in terms of foreshortening factor. f. 

 ∴ f = 
|AB|
|B'A'|   

 
Depending on foreshortening factors, we have (3) different types of Axonometric 
projections: 

 
• Isometric 
• Diametric 
• Trimetric 

 
When all foreshortening factors along the x-, y- and z-axes are equal, i.e., fx = fy = 
fz, then we have Isometric projection, i.e., the direction of projection makes equal 
angle with all the positive sides of x, y, and z-axes, respectively. 

 
Similarly, if any two foreshortening factors are equal, i.e., fx = fy or fy = fz or fx = fz 
then, we have Diametric projection. If all the foreshortening factors are unequal d  
makes unequal angles with x, y, and z-axes/, then we have Trimetric projection.  

 
4)  Refer 2. 3. 1. 2 Isometric projection. 
 
5)  For orthographic projection, Normal vector N should be parallel to the direction 

of projection vecter, d . 
                  i.e.      Nkd =  where k is a constant. 
                             (-1, 0, 0) = k(1, 0, -1) 
                          This is not possible 
 

Hence, the projection plane is not perpendicular to the direction of projection. 
Hence it is not an orthographic projection. 

 
6)  The transformation matrix for cavalier and cabinet projections are given by: 
  

Pcav =  =  = 


















1000
00θf.sinθf.cos
0010
0001



















°°
1000
0045sin45cos
0010
0001



















1000
002/12/1
0010
0001

-----1) 
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 &Pcab= =


















1000
00θf.sinθf.cos
0010
0001





















°°

1000

0030cos.
2
130sin.

2
1

0010
0001

= ---(2) 


















1000
0025.043.0
0010
0001

 
The given pyromid can be shown by the following Figure p. 
 
 
 
  
 
 
 
 
 
 
 
 

Figure  p 

o

– z

CB

A D

E

y

–x

x

z 
The vertices of the pyramid are: 
 
A (2, 0, – 2), B (2, 0, 2), C (– 2, 0, 2) 
D (– 2, 0, – 2), E (0, 10, 0) 
 
Using the projection matrices from (1) and (2), we can easily compute the new 
vertices of the pyramid for cavalier and cabinet projections. (refer Example 4). 
 
Check Your Progress 3 
 
1)  Let p (x, y, z) be any point in 3D and the cop is E (0, 0, 0). 
 
 The parametric equation of the ray, starting from E and passing through p is: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

– z 

x 

COP 

z = d plane 
E (0, 0, 0) 

p (x, y, z) 

p'(x’,y’,z’) 

y  
Figure q 

 
E + t (P – E), t > 0 

 = (0, 0, 0) + t [(x, y, z) – (0, 0, 0)] 
 = (t.x, t. y, t. z) 
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Transformations 
 

 

For this projected point of p (x, y, z) will be: 
  t. z = d 

              =  t = 
z
d  must be true. 

 
Hence the projected point of p (x, y, z) will be: 

 P’ = (x’, y’, z’) = 





 d,

z
d.y,

z
d.x

⇒ in homogenous Coordinates 




1,d,

z
dy,

z
dx


             

= (dx, dy, dz, z) 
 
In matrix form: 

 (x’, y’, z’, 1) = (x, y, z, 1)  


















0000
1d00
00d0
000d

 
2) Since the cube is first translated by –0.5 units in the x and y-directions, to get the 

centred cube on the z-axis.  
 

The transformation matrix for translation is: 
 

 [Tx, y] =     ----------(1) 


















−− 105.05.0
0100
0010
0001

 
A single-point perspective transformation onto the z = 0 plane is given by: 

 

  Pper,z = 

     ----------(2) 


















1000
d/1000

0010
0001

 

It has a center of projection on the z-axis: at d = – 10 ⇒ 
d
1  = – 0.1 

 
From equation (2) 

 

  Pper,z = 

  


















−
1000

1.0000
0010
0001

 
The resulting transformation can be obtained as: 

 

 [T] = [Tx,y]. [Pper,z] =  


















−−
−

105.05.0
1.0000

0010
0001
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Viewing 
Transformations 

 

 

Thus, the projected points of the centred cube V = [ABCDEFGH] will be: 
 

 [V’] = [V]. [T] =   .  

































1010
1011
1001
1000

.

1110
1111
1101
1100



















−−
−

105.05.0
1.0000

0010
0001

 

 = 


0
0

 =  
































−

−
−−

−

−
−−

105.05.0
105.05.0
105.05.0
105.05.
9.005.05.
9.005.05.0
9.005.05.0
9.005.05.0

H'
G'
F'
E'
D'
C'
B'
A'

































−

−
−−
−−

−
−−

105.05.0
105.05.0
105.05.0
105.05.0
1056.056.0
1056.056.0
1056.056.0
1056.056.0

 
 
3)  A unit cube is placed at the origin such that its 3-edges are lying along the x,y, 

and z-axes. The cube is rotated about the y-axis by 30°. Obtain the perspective 
projection of the cube viewed from (80, 0, 60) on the z= 0 plane. 

 
3) Rotation of a cube by 30° along y-axis, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

(0,0,0)

E 

H 

G

C 

F 

BA 

D 

y 

 
 

Figure r z  
 

[Ry]30° =  


















°°

°−°

1000
030cos030sin
0010
030sin030cos
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Transformations 
 

  = 


















 −

1000
02/302/1
001
02/102/3


 0  =  

















 −

1000
06.805.0
0010
05.0086.0

 
Let p (x, y, z) be any point of a cube in a space and p’ (x’, y’, z’) is its projected point 
onto z = 0 plane. 
 
The pametric equation of a line, starting from E (80, 0, 60) and passing through P (x, 
y, z) is: 
        E + t ( P – E), 0 < t ∞. 
         = (80, 0, 60) + t [(x, y, z) – (80, 0, 60)] 
         = (80, 0, 60) + t[ (x – 80), y, (z – 60)] 
         = [t (x – 80) + 80, t.y, t. (z – 60) + 60] 
 
Assume point P’ can be obtained, when t = t* 
⇒ P’ = (x’, y’, z’) = [t* (x – 80) + 80, t*.y, t* (z – 60) + 60] 
 Since point p’ lies on z = 0 plane, so 

t* (z – 60) + 60 = 0 ⇒ t* = 
60

60
−
−

z
 

⇒ p’ = (x’, y’, z’) = 







−
−

−
+− 0,

60
.60,

60
.80.60

z
y

z
zx  

In Homogeneous coordinates system: 
 

 P’ (x’, y’, z’, 1) =  







−
−

−
+− 1,0,

60z
y.60,

60z
z.80x.60  

   = ( – 60. x + 80. z, – 60. Y, 0, z – 60) 
In Matrix form: 

 (x’, y’, z’, 1) = (x, y, z, 1).  ------------(1) 


















−

−
−

60000
10080
00600
00060

  P’n = Pn. Ppar, z    -------------(2) 
 
Since a given cube is rotated about y-axis by 30°, so the final projected point p’ (of a 
cube on z = 0 plane) can be obtained as follows: 
 
  P’n = Pn. [Ry]30°. Ppar, z 

(x’, y’, z’, 1) = (x, y, z, 1) . .  
















 −

1000
086.005.0
0010
05.0086.0



















−

−
−

60000
10080
00600
00060

 

 (x’, y’, z’, 1) = (x, y, z, 1) -------------(3) 


















−

−
−

60000
86.0008.38
00600

5.0009.91

 
 P”n = P. Ppar, z, 30° 
 
This equation (3) is the required perspective transformation. Which gives a 
coordinates of a projected point P’ (x’, y’, z’) onto the z = 0 plane, when a point P (x, 
y, z) is viewed from E (80, 0, 60). 
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Viewing 
Transformations 

 

 

Thus, all the projected points of a given cube can be obtained as follows: 
 

 P’ = V. Ppar, z, 30° =     

H
G
F
E
D
C
B
A

































1010
1001
1000
1110
1111
1111
1101
1100



















−

−
−

60000
86.0008.38
00600

5.0009.90

 

  =   =    

H'
G'
F'
E'
D'
C'
B'
A'

































−−
−−
−
−
−−
−−
−
−

0.600600
5.600609.90
5.60009.90
0.60000
86.600608.38
64.590607.129
64.59007.129
14.59008.38

H'
G'
F'
E'
D'
C'
B'
A'

































−
−

−
−
−
−

1010
1099.050.1
10050.1
0000
1099.064.0
1001.117.2
10017.2
10072.0

 
Hence, A’ = (– 0.72, 0, 0), B’ = (– 2.17, 0, 0), C’ = (– 2.17, 1.01, 0) 
 D’ = (– 0.64, 0.99, 0), E’ = (0, 0, 0), F’ = (– 1.5, 0, 0) 
 G’ = (– 1.50, 0.99, 0) and H’ = (0, 1, 0). 
 
Check Your Progress  4 
 
1)  The given perspective transformation matrix can be written as: 
 

From Rows one, two and three from equation matrix (I), the vanishing point w.r.t. 
x, y and z axis, will be: 

 
 Cx = (3.1, 2.0, 0) 
 Cy = (0, 4.56, 0) 
 Cz = (3.5, 4.0, 0) 
 
2)  From the given V.P., we can obtain the corresponding center of projections. Since 
vanishing points: Vx = 5, Vy= 5 and Vz = – 5, hence center of projections is at: 
 
  Cx = – 5, Cy = – 5 and Cz = 5 

 

∴1/d1 = =
5
1 0.2, ==

5
11

2d
0.2 and 

3

1
d

= 
5
1− = – 0.2 

Hence, the 3 – point perspective transformation is: 
 

 Pper–xyz =   ------------(I) 


















−
1000

2.0100
2.0010
2.0001

 
Thus by multiplying v = [ABCDEFGH] with projection matrix (I), we can obtain the 
transformed vertices of a given cube. 
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