

5

Web Security Concepts
UNIT 1 WEB SECURITY CONCEPTS

Structure Page Nos.

1.0 Introduction 5
1.1 Objectives 5
1.2 Web Services and its Advantages 6
1.3 Web Security Concepts 8

1.3.1 Integrity
1.3.2 Confidentiality
1.3.3 Availability
1.3.4 SSL/TSL

1.4 HTTP Authentication 12
1.4.1 HTTP Basic Authentication
1.4.2 HTTP Digest Authentication
1.4.3 Form Based Authentication
1.4.4 HTTPS Client Authentication

1.5 Summary 15
1.6 Solutions/Answers 16
1.7 Further Readings/References 16

1.0 INTRODUCTION

Web Security may be defined as technological and managerial procedures applied to
computer systems to ensure the availability, integrity, and confidentiality of
information. It means that protection of integrity, availability and confidentiality of
computer assets and services from associated threats and vulnerabilities.

The security of the web is divided into two categories (a) computer security, and (b)
network security. In generic terms, computer security is the process of securing a
single, standalone computer; while network security is the process of securing an
entire network of computers.

(a) Computer Security: Technology and managerial procedures applied to

computer systems to ensure the availability, integrity, and confidentiality of the
data managed by the computer.

(b) Network Security: Protection of networks and their services from unauthorised

modification destruction, or disclosure and provision of assurance that the
network performs its critical functions correctly and that are nor harmful side
effects.

The major points of weakness in a computer system are hardware, software, and data.
However, other components of the computer system may be targeted. In this unit, we
will focus on web security related topics.

1.1 OBJECTIVES

After going through this unit, you should be able to :

• achieve integrity, confidentiality and availability of information on the internet
 integrity and confidentiality can also be enforced on web services through
 the use of SSL(Secure Socket Layer); and

6

Web Security
and Case Study • ensure secure communication on the Internet for as e-mail,

Internet faxing, and other data transfers.

1.2 WEB SERVICES AND ITS ADVANTAGES

According to the W3C a Web service is a software system designed to support
interoperable machine-to-machine interaction over a network. It has an interface that
is described in a machine-processable format such as WSDL. Other systems interact
with the Web service in a manner prescribed by its interface using messages, which
may be enclosed in a SOAP envelope. These messages are typically conveyed using
HTTP, and normally comprise XML in conjunction with other Web-related standards.
Software applications written in various programming languages and running on
various platforms, can use web services to exchange data over computer networks
like, the Internet, in a manner similar to inter-process communication on a single
computer. This interoperability (i.e. between Java and Python, or Microsoft Windows
and Linux applications) is due to the use of open standards.

Web services and its advantages

• Web services provide interoperability between various software applications

running on disparate platforms/operating systems.

• Web services use open standards and protocols. Protocols and data formats are

text-based where possible, which makes it easy for developers to undestand.

• By utilising HTTP, web services can work through many common firewall

security measures without having to make changes to the firewall filtering rules.

• Web services allow software and services from different companies and

locations to be combined easily to provide an integrated service.

• Web services allow the reuse of services and components within an

infrastructure.

• Web services are loosely coupled thereby, facilitating a distributed approach to

application integration.

So it is necessary to provide secure communication in web communication.

WS-Security

WS-Security (Web Services Security) is a communications protocol providing a
means for applying security to Web Services Originally developed by IBM,
Microsoft, and VeriSign, the protocol is now officially called WSS and developed via
a committee in Oasis-Open.

The protocol contains specifications on how integrity and confidentiality can be
nforced on e Web Services messaging.

Three basic security concepts important to information on the Internet are
onfidentiality, integrity, and availability. c

http://en.wikipedia.org/wiki/Inter-process_communication
http://en.wikipedia.org/wiki/Java_programming_language
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/HTTP
http://en.wikipedia.org/wiki/Firewall_%28networking%29
http://en.wikipedia.org/wiki/Communications_protocol
http://en.wikipedia.org/wiki/Web_Services
http://en.wikipedia.org/wiki/IBM
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/VeriSign
http://en.wikipedia.org/wiki/Oasis-Open
http://en.wikipedia.org/wiki/Web_Services

7

Web Security Concepts A Common Windows Security Problem

Unfortunately, many Microsoft Windows users are unaware of a common security
leak in their network settings.

This is a common setup for network computers in Microsoft Windows:

• Client for Microsoft Networks
• File and Printer Sharing for Microsoft Networks
• NetBEUI Protocol
• Internet Protocol TCP/IP

If your setup allows NetBIOS over TCP/IP, you have a security problem:

• Your files can be shared all over the Internet
• Your logon-name, computer-name, and workgroup-name are visible to others.

If your setup allows File and Printer Sharing over TCP/IP, you also have a
problem:

• Your files can be shared all over the Internet

Solving the Problem

For Windows 95/98/2000 users:

You can solve your security problem by disabling NetBIOS over TCP/IP:

You must also disable the TCP/IP Bindings to Client for Microsoft Networks and File
and Printer Sharing.

If, you still want to share your Files and Printer over the network, you must use the
NetBEUI protocol instead of the TCP/IP protocol. Make sure you have enabled it for
your local network.

 Check Your Progress 1

1) Compare and Contrast Computer and Network Security.

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

2) Explain IP protocol Suit.

……………………………………………………………………………………

……………………………………………………………………………………

 ……………………………………………………………………………………

3) What is web security?Explain with suitable examples.

………………………………………………….………………………………...

……………………………………………………………………………………

……………………………………………………………………………………

8

Web Security
and Case Study 1.3 WEB SECURITY CONCEPTS

In this section, we will describe briefly four concepts related to web security.

Three basic security concepts important to information on the Internet are
confidentiality, integrity, and availability. Concepts relating to the people who use that
information are authentication, authorisation, and nonrepudiation. Integrity and
confidentiality can also be enforced on Web Services through the use of Transport
Layer Security (TLS). Both SSL and TSL (Transport Layer Security) are the same.
The dependencies among these concepts (also called objects) is shown in Figure 1.

1.3.1 Integrity
Integrity has two facets:

Data Integrity: This property, that data has not been altered in an unauthorised
manner while in storage, during processing or while in transit. Another aspect of data
integrity is the assurance that data can only be accessed and altered by those
authorised to do so. Often such integrity is ensured by use of a number referred to as a
Message Integrity Code or Message Authentication Code. These are abbreviated as
MIC and MAC respectively.

System Integrity: This quality that a system has when performing the intended
function in an unimpaired manner, free from unauthorised manipulation.
Integrity is commonly an organisations most important security objective, after
availability. Integrity is particularly important for critical safety and financial data
used for activities such as electronic funds transfers, air traffic control, and financial
accounting.

1.3.2 Confidentiality

Confidentiality is the requirement that private or confidential information should not
to be disclosed to unauthorised individuals. Confidentiality protection applies to data
in storage, during processing, and while in transit.

For many organisations, confidentiality is frequently behind availability and integrity
in terms of importance. For some types of information, confidentiality is a very
important attribute. Examples include research data, medical and insurance records,
new product specifications, and corporate investment strategies. In some locations,
there may be a legal obligation to protect the privacy of individuals.

This is particularly true for banks and loan companies; debt collectors; businesses that
extend credit to their customers or issue credit cards; hospitals, doctors’ offices, and
medical testing laboratories; individuals or agencies that offer services such as
psychological counseling or drug treatment; and agencies that collect taxes.

1.3.3 Availability

Availability is a requirement intended to assure that systems work promptly and
service is not denied to authorised users. This objective protects against:

• Intentional or accidental attempts to either:

 - perform unauthorised deletion of data or

 - otherwise cause a denial of service or data.

http://en.wikipedia.org/wiki/Data_integrity
http://en.wikipedia.org/wiki/Confidentiality
http://en.wikipedia.org/wiki/Web_Services
http://en.wikipedia.org/wiki/Message_Integrity_Code
http://en.wikipedia.org/wiki/Message_Authentication_Code

9

Web Security Concepts • Attempts to use system or data for unauthorised purposes.
 Availability is frequently an organisations foremost security objective. To make

information available to those who need it and who can be trusted with it,
organisations use authentication and authorisation.

Authentication

Authentication is proving that a user is whom s/he claims to be. That proof may
involve something the user knows (such as a password), something the user has (such
as a “smartcard”), or something about the user that proves the person’s identity (such
as a fingerprint).

Authorisation

Authorisation is the act of determining whether a particular user (or computer system)
has the right to carry out a certain activity, such as reading a file or running a program.
Authentication and authorisation go hand in hand. Users must be authenticated before
carrying out the activity they are authorised to perform.

Accountability (to be individual level)

Accountability is the requirement that actions of an entity may be traced uniquely to
that entity. Accountability is often an organisational policy requirement and directly
supports repudiation, deterrence, fault isolation, intrusion detection and prevention,
and after action recovery and legal action.

Assurance (that the other four objectives have been adequately met)

Assurance is the basis for confidence that the security measures, both technical and
operational, work as intended to protect the system and the information it processes.
Assurance is essential, without it other objectives cannot be met.

The above mentioned security objects, dependencies are shown in Figure 1.

Figure 1: Security Objects Dependencies

10

Web Security
and Case Study

 Check Your Progress 2

1) List the basic security concepts.

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

2) What do you understand by information assurance?
……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

3) Compare and contrast data integrity and system integrity.

……………………………………………………………………………………

……………………………………………………………………………………

……………………………………………………………………………………

1.3.4 Secure Socket Layer (SSL)/Transport Layer Security(TLS)

Secure Socket Layer (SSL) and Transport Layer Security (TLS), its successor, are
cryptographic protocols which provide secure communication on the Internet for as
e-mail, internet faxing, and other data transfers.

Description

SSL provides endpoint authentication and communication privacy over the Internet
using cryptography. In typical use, only the server is authenticated (i.e. its identity is
ensured) while the client remains unauthenticated; mutual authentication requires
public key infrastructure (PKI) deployment to clients. The protocols allow
client/server applications to communicate in a way designed to prevent
eavesdropping, tampering, and message forgery.

Tampering may relate to:

• Tampering (Sports): The practice, often illegal, of professional sports teams

negotiating with athletes of other teams.
• Tamper-evident: A device or process that makes unauthorised access to a

protected object easily detected.
• Tamper proofing: A methodology used to hinder, deter or detect unauthorized

access to a device or circumvention of a security system.

Message Forgery

In cryptography, message forgery is the sending of a message to deceive the recipient
of whom the real sender is. A common example is sending a spam e-mail from an
address belonging to someone else

SSL involves three basic phases:

1) Peer negotiation for algorithm support,

2) Public key encryption-based key exchange and certificate-based
 authentication, and

http://en.wikipedia.org/wiki/Client/server
http://en.wikipedia.org/wiki/E-mail_spam

11

Web Security Concepts 3) Symmetric cipher-based traffic encryption.

During the first phase, the client and server negotiation uses cryptographic algorithms.
Current implementations support the following choices:

• For public-key cryptography: RSA, Diffie-Hellman, DSA or Fortezza;

• For symmetric ciphers: RC2, RC4, IDEA, DES, Triple DES or AES;

• For one-way hash functions: MD5 or SHA.

SSL working

The SSL protocol exchanges records. Each record can be optionally compressed,
encrypted and packed with a Message Authentication Code (MAC). Each record has a
“content type” field that specifies which upper level protocol is being used.
When the connection begins, the record level encapsulates another protocol, the
handshake protocol. The client then sends and receives several handshake structures:

• It sends a ClientHello message specifying the list of cipher suites, compression

methods and the highest protocol version it supports. It also sends random bytes
which will be used later.

• Then it receives a ServerHello, in which the server chooses the connection

parameters from the choices offered by the client earlier.

• When the connection parameters are known, client and server exchange

certificates (depending on the selected public key cipher). These certificates are
currently X.509, but there is also a draft specifying the use of OpenPGP based
certificates.

• The server can request a certificate from the client, so that the connection can be

mutually authenticated.

• Client and server negotiate a common secret called “aster secret”, possibly

using the result of a Diffie-Hellman exchange, or simply encrypting a secret
with a public key that is decrypted with the peer’s private key. All other key
data is derived from this “master secret” (and the client- and server-generated
random values), which is passed through a carefully designed “Pseudo Random
Function”.

TLS/SSL have a variety of security measures:

• Numbering all the records and using the sequence number in the MACs.

• Using a message digest enhanced with a key.

• cks), Protection against several known attacks (including man in the middle atta

like those involving a downgrade of the protocol to previous (less secure)
versions, or weaker cipher suites.

• “Finished”) sends a hash of all the The message that ends the handshake (

exchanged data seen by both parties.

• The pseudo random function splits the input data in 2 halves and processes them

with different hashing algorithms (MD5 and SHA), then XORs them together.
This way it protects itself in the event that one of these algorithms is found to be
vulnerable.

http://en.wikipedia.org/wiki/X.509
http://en.wikipedia.org/wiki/OpenPGP
http://en.wikipedia.org/wiki/Man_in_the_middle_attack
http://en.wikipedia.org/wiki/Man_in_the_middle_attack
http://en.wikipedia.org/wiki/MD5
http://en.wikipedia.org/wiki/SHA
http://en.wikipedia.org/wiki/XOR

12

Web Security
and Case Study

Public key cryptography is a form of cryptography which generally allows users to
communicate securely without having prior access to a shared secret key. This is done
by using a pair of cryptographic keys, designated as public key and private key, which
are related mathematically.

The term asymmetric key cryptography is a synonym for public key cryptography
though a somewhat misleading one. There are asymmetric key encryption algorithms
that do not have the public key-private key property noted above. For these
algorithms, both keys must be kept secret, that is both are private keys.

In public key cryptography, the private key is kept secret, while the public key may be
widely distributed. In a sense, one key “locks” a lock; while the other is required to
unlock it. It should not be possible to deduce the private key of a pair, given the public
key, and in high quality algorithms no such technique is known.

There are many forms of public key cryptography, including:

• Public key encryption keeping a message secret from anyone that does not

possess a specific private key.

• Public key digital signature allowing anyone to verify that a message was

created with a specific private key.

• Key agreement generally, allowing two parties that may not initially share a

secret key to agree on one.

1.4 HTTP AUTHENTICATION

A web client can authenticate a user to a web server using one of the following

• HTTP Basic Authentication

• Form Based Authentication

s a web client to authenticate the user. As a part of the request, the web server
g of

eb client obtains the username and the

imple base64 ENCODING (not ENCRYPTED !), and there is no provision for target

mechanisms:

• HTTP Digest Authentication

• HTTPS Client Authentication

1.4.1 HTTP Basic Authentication

HTTP Basic Authentication, which is based on a username and password, is the
authentication mechanism defined in the HTTP/1.0 specification. A web server
equestr

passes the realm (a string) in which the user is to be authenticated. The realm strin
Basic

Authentication does not have to reflect any particular security policy domain
confusingly also referred to as a realm). The w(

password from the user and transmits them to the web server. The web server then
authenticates the user in the specified realm.

asic Authentication is not a secure authentication as user passwords are sent in B
s
server authentication. Additional protection mechanism can be applied to mitigate

http://en.wikipedia.org/wiki/Cryptography

13

Web Security Concepts ese concerns: a secure transport mechanism (HTTPS), or security at the network
s the IPSEC protocol or VPN strategies) can be deployed. This is shown
ing role-based authentication.

 <web-resource-collection>

rce-

/*</url-pattern>

</role-name>

manager</role-name>

ASIC</auth-method>

m-name>User Auth</realm-name>

in</role-name>

<role-name>manager</role-name>

</security-role>

MORE

ECURE than the simple base64 encoding used by Basic Authentication, e.g., HTTPS
ead use,

 user
sswords to be encoded in a form

at is not easily reversible, but that the web server can still utilise for authentication.

th
level (such a
in the follow

<web-app>

 <security-constraint>

 <web-resource-name>User Auth</web-resou

name>

 <url-pattern>/auth

 </web-resource-collection>

 <auth-constraint>

 <role-name>admin

 <role-name>

 </auth-constraint>

 </security-constraint>

 <login-config>

 <auth-method>B

 <real

 </login-config>

 <security-role>

 <role-name>adm

 </security-role>

 <security-role>

</web-app>

1.4.2 HTTP Digest Authentication

Similar to HTTP Basic Authentication, HTTP Digest Authentication authenticates a
user based on a username and a password. However, the authentication is performed
by transmitting the password in an ENCRYPTED form, which is much
S
Client Authentication. As Digest Authentication is not currently in widespr
servlet containers are encouraged but NOT REQUIRED to support it.

The advantage of this method is that the cleartext password is protected in
transmission, it cannot be determined from the digest that is submitted by the client to
the server. Digested password authentication supports the concept of digesting
passwords. This causes the stored version of the pa
th

14

Web Security
and Case Study

he server, the password are encrypted, even on a
on-SSL connection. In the server, the password can be stored in clear text or

s

d
en the browser and the

erver, the password is encrypted, even on a non-SSL connection. In the server, the
rypted text, which is true for all login
ion deployment.

he look and feel of the ‘login screen’ cannot be varied using the web browser’s built-

he web application deployment descriptor, contains entries for a login form and error

tainer checks the
ser’s authentication. If the user is authenticated and possesses authority to access the

If th

URL path triggering the authentication stored by the container.

) The user is asked to fill out the form, including the username and password fields.

3) nt posts the form back to the server.

e

 200.

 it
rised role for accessing the resource.

 path.

he error page sent to a user that is not authenticated contains information about the
ilure.

From a user perspective, digest authentication acts almost identically to basic
authentication in that it triggers a login dialogue.

The difference between basic and digest authentication is that on the network
connection between the browser and t
n
encrypted text, which is true for all login methods, and is independent of the choice
that the application deployer makes.

Digested password is authentication based on the concept of hash or digest. In this
stored version, the passwords is encoded in a form that is not easily reversible and thi
is used for authentication. Digest authentication acts almost identically to basic
authentication in that it triggers a login dialogue. The difference between basic an
digest authentication is that on the network connection betwe
s
password can be stored in clear text or enc

ethods and is independent of the applicatm

1.4.3 Form Based Authentication

T
in authentication mechanisms. This form based authentication mechanism allows a
developer to CONTROL the look and feel of the login screens.

T
page. The login form must contain fields for entering a username and a password.
These fields must be named j_username and j_password, respectively.

When a user attempts to access a protected web resource, the con
u
resource, the requested web resource is activated and a reference to it is returned.

e user is not authenticated, all of the following steps occur:

1) The login form associated with the security constraint is sent to the client and the

2

The clie

4) The container attempts to authenticate the user using the information from th

form.

5) If authentication fails, the error page is returned using either a forward or a

redirect, and the status code of the response is set to

6) If authentication succeeds, the authenticated user’s principal is checked to see if

is in an autho

7) If the user is authorised, the client is redirected to the resource using the stored

URL

T
fa

15

Web Security Concepts

uthenticated. Again additional protection can alleviate some of these concerns: a

orm based login and URL based session tracking can be problematic to implement.

r by SSL session information.

ublic Key Certificate

KC). Currently, PKCs are useful in e-commerce applications and also for a single-

 either

ge

d

e Web
lic key

ertificate that conforms to a standard that is defined by X.509 Public Key
ning an application that uses SSL, you must

L support on the server and set up the public key certificate.

 C

…………………..………………………………………………………..

..………………………………………………..

Form Based Authentication has the same lack of security as Basic Authentication
since the user password is transmitted as a plain text and the target server is not
a
secure transport mechanism (HTTPS), or security at the network level (such as the
IPSEC protocol or VPN strategies) are applied in some deployment scenarios.

F
Form based login should be used only when, sessions are being maintained by cookies
o

1.4.4 HTTPS Client Authentication

End user authentication using HTTPS (HTTP over SSL) is a strong authentication
mechanism. This mechanism requires the user to possess a P
(P
sign-on from within the browser. Servlet containers that are not J2EE technology
compliant are not required to support the HTTPS protocol.

Client-certificate authentication is a more secure method of authentication than
BASIC or FORM authentication. It uses HTTP over SSL, in which the server and,
optionally, the client authenticate one another with Public Key Certificates. Secure
Sockets Layer (SSL) provides data encryption, server authentication, messa
integrity, and optional client authentication for a TCP/IP connection. You can think of
a public key certificate as the digital equivalent of a passport. It is issued by a truste
organisation, which is known as a certificate authority (CA), and provides
identification for the bearer. If, you specify client-certificate authentication, th
server will authenticate the client using the client’s X.509 certificate, a pub
c
Infrastructure (PKI). Prior to run
configure SS

heck Your Progress 3

1) Compare and contrast the authentication types (BASIC, DIGEST, FORM, and
CLIENT-CERT); describe how the type works; and given a scenario, select an
appropriate type.

 …………..………………………………………………………………..

 …………………………

1.5 SUMMARY

To Achieve integrity, confidentiality and availability of Information on the interne
the goal of web security integrity. Confidentiality can also be enforced on web
services through the use of SSL. Integrity is The property that data has not been
altered in an unauthorised manner while in storage, during processing or while in
transit. Confidentiality is the requirement that private or confidential information is
not to be disclosed to unauthorised individuals. Confidentiality protection applies to

ata in storage, du

t is

ring processing, and while in transit. Availability is a requirement
tended to assure that systems work promptly and that service is not denied to

uthorised users.

d
in
a

16

Web Security
and Case Study /ANSWERS 1.6 SOLUTIONS

Check Your Progress 1

Computer Security: Technology and managerial procedures applied to computer
systems to ensure the availability, integrity, and confidentiality of the data
managed by the computer. Whereas, Network Security is protection of networks
and their services from unauthorized m

1)

odification destruction, or disclosure and

ly

 col suit: The different types of protocols used in different layers are

3)

 & confidentiality of computer assets and services from associated
ple HTTPS, SSL,

provision of assurance that the network performs its critical functions correct
and there are not harmful side effects.

IP proto2)
 Physical, data link, network, transport, session, presentation and applications

layer.

Web Security can be defined as technological and managerial procedures
applied to computer systems to ensure the availability, integrity, and
confidentiality of the information. It means that protection of Integrity,
Availability
threats and vulnerabilities. Explain with suitable exam
IPSec etc.

Check Your Progress 2

1) The basic security concepts are:
 Integrity, authenticity, confidentiality, authorisation, availability, and assurance.

2) he basis for confidence that the security measures, Information assurance is t
both technical and operational, work as intended to protect the system and the
information it processes.

3) Data Integrity: The property that data has not been altered in an unauthorised

manner while in storage, during processing or while in transit.

 System Integrity: The qua
function in an unimpa

lity that a system has, when, performing the intended
ired manner, free from unauthorised manipulation.

Check Your Progress 3

1) nt

 upon the application type finance, stock exchange, simple
message exchange between two persons, remote logging, client server

Hint: Compare and Authentication type with suitable example in differe
scenario depending

authentication etc.

1. FURTHER READINGS/REFERENCES 7

• Stalling William, Cryptography and Network Security, Principles and Practice,

2000, SE, PE.

• Daview D. and Price W., Security for Computer Networks, New York:Wiley,
1989.

• Chalie Kaufman, Radia Perlman, Mike Speciner, Network Security,
 Pearson Education.

• Applied Cryptography, John Wiley and Sons B. Schnier,

17

Web Security Concepts • Steve Burnett & Stephen Paine, RSA Security’s Official Guide to Practice,
SE, PE.

• Dieter Gollmann, Computer Security, John Wiley & Sons.

Reference websites:

• World Wide Web Security FAQ:
http://www.w3.org/Security/Faq/www-security-faq.html

• Web Security: http://www.w3schools.com/site/site_security.asp

• Authentication Authorisation and Access Control:
http://httpd.apache.org/docs/1.3/howto/auth.html

• Basic Authentication Scheme:
http://en.wikipedia.org/wiki/Basic_authentication_scheme

• OpenSSL Project: http:/www.openssl.org

• f.org/rfc/rfc2617.txt Request for Comments 2617 : http://www.iet

• Sun Microsystems Enterprise JavaBeans Specification:
http://java.sun.com/products/ejb/docs.html.

• Javabeans Program Listings: http:/e-docs.bea.com

 18

Web Security
and Case Study

UNIT 2 SECURITY IMPLEMENTATION

Structure Page Nos.

2.0 Introduction 18
2.1 Objectives 18
2.2 Security Implementation 19
 2.2.1 Security Considerations
 2.2.2 Recovery Procedures
2.3 Security and Servlet 21
2.4 Form Based Custom Authentication 22

2.4.1 Use of forms to Authenticate Clients
2.4.2 Use Java’s Multiple-Layer Security Implementation

2.5 Retrieving SSL Authentication 28
2.5.1 SSL Authentication 28
2.5.2 Using SSL Authentication in Java Clients

2.5.2.1 JSSE and Web Logic Server
2.5.2.2 Using JNDI Authentication
2.5.2.3 SSL Certificate Authentication Development Environment
2.5.2.4 Writing Applications that Use SSL

2.6 Summary 48
2.7 Solutions/Answers 49
2.8 Further readings/References 50

1.0 INTRODUCTION

In unit 1 we have discussed web services and its advantages, web security concepts,
http authentication etc. This unit the following paragraphs and sections describes
security implementation, security&servlet, form based custom authentication, and
SSL authentication.

Intranet users are commonly required to use, a separate password to authenticate
themselves to each and every server they need to access in the course of their work.
Multiple passwords are an ongoing headache for both users and system
administrators. Users have difficulty keeping track of different passwords, tend to
choose poor ones, and then write them down in obvious places. Administrators must
keep track of a separate password database on each server and deal with potential
security problems related to the fact that passwords are sent over the network
routinely and frequently.

2.1 OBJECTIVES

After going through this unit, you should be able to learn about:

• the threats to computer security;

• what causes these threats;

• various security techniques;

• implementing Security Using Servlets, and

• implementing Security Using EJB’s.

19

Security

Implementation2.2 SECURITY IMPLEMENTATION

In this section, we will look at security implementation issues.

2.2.1 Security Considerations

System architecture vulnerabilities can result in the violation of the system’s security
policy. Some of these are described below:

Covert Channel: It is a way for an entity to receive information in an unauthorised
manner. It is an information flow that is not controlled by a security mechanism. It is
an unintended communication, violating the system’s security policy, between two of
more users/subjects sharing a common resource.

This transfer can be of two types:

(1) Covert Storage Channel: When a process writes data to a storage location and

another process directly or indirectly reads it. This situation occurs when the
processes are at different security levels, and therefore are not supposed to be
sharing sensitive data.

(2) Covert Timing Channel: One process relays information to another by

modulating its use of system resources. There is not much a user can do to
countermeasure these channels. But for Trojan that uses HTTP protocol, intrusion
detection and auditing may detect a covert channel. Buffer overflow or Parameter
checking or “smashing the stack”: Failure to check the size of input streams
specified by the parameters. For example, buffer overflow attack exploits this
vulnerability in some operating systems and programs. This happens when
programs do not check the length of data that is inputted into a program and then
processed by the CPU. The various countermeasures are: (a) proper programming
and good coding practices, (b) Host IDS, (c) File system permission and
encryption, (d) Strict access control, and (e) Auditing.

Maintenance Hook or Trap Door or Back Doors: These are instructions within the
software that only the developers know about and can invoke. This is a mechanism
designed to bypass the system’s security protections. The various countermeasures
are:

(a) Code reviews and unit integration testing.

(b) Host intrusion detection system.

(c) Using file permissions to protect configuration files and sensitive information

from being modified.

(d) Strict access control.

(e) File system encryption, and

(f) Auditing.

Timing Issues or Asynchronous attack or Time of Check to Time of Use attack:

This deals with the timing difference of the sequences of steps a system takes to
complete a task. This attack exploits the difference in the time that security controls
were applied and the time the authorised service was used. A time-of-check versus
time-of-use attack, also called race conditions, could replace autoexec.bat.

 20

Web Security
and Case Study

The various countermeasures for such type of attacks are:

(a) Host intrusion detection system.
(b) File system permissions and encryption.
(c) Strict access control mechanism, and
(e) Auditing.

2.2.2 Recovery Procedures

When a trusted system fails, it is very important that the failure does not compromise
the security policy requirements. The recovery procedures also should not give any
opportunity for violation of the system’s security policy. The system restart must be in
a secure mode. Startup should be in the maintenance mode that permits access the
only privileged users from privileged terminals.

Fault-tolerant System: In this system, the computer or network continues to function
even when a component fails. In this the system has the capability of detecting the
fault and correcting the fault as well.

Failsafe System: In this system, the program execution is terminated and the system
is protected from being compromised when a system (hardware or software) failure
occurs is detected.

Failsoft or resilient: When a system failure occurs and is detected, selected non-
critical processing is terminated. The system continues to function in a degraded
mode.

Failover : This refers to switching to a duplicate “hot” backup component in real time
when a hardware or software failure occurs.

Cold Start: This is required when a system failure occurs and the recovery procedures
cannot return the system to a known, reliable, secure state. The maintenance mode of
the system is usually employed to bring data consistency through external
intervention.

 Check Your Progress 1

1) What are the different system architecture vulnerabilities?

………………………………………………….………………………………...
……………………………………………………………………………………
……………………………………………………………………………………

2) What are the counter measures for these system architecture vulnerabilities?

………………………………………………….………………………………...
……………………………………………………………………………………
……………………………………………………………………………………

3) What are the different procedures of recovery?

………………………………………………….………………………………...
……………………………………………………………………………………
……………………………………………………………………………………

21

Security

Implementation2.3 SECURITY AND SERVLET

In this section, we will look at the security issues related to Java and its environment.

Java Security

In Java Security, there is a package, java.security.acl, that contains several classes that
you can use to establish a security system in Java. These classes enable your
development team to specify different access capabilities for users and user groups.
The concept is fairly straightforward. A user or user group is granted permission to
functionality by adding that user or group to an access control list.

For example, consider a java.security.Principal called testUser as shown below:

Principal testUser = new PrincipalImpl (“testUser”);

Now, you can create a Permission object to represent the capability of reading from a
file.

Permission fileRead = new PermissionImpl (“readFile”);

Once, you have created the user and the user’s permission, you can create the access
control list entry. Its important to note that the security APIs require that the owner of
the access list be passed in order to ensure that this is truly the developer’s desired
action. It is essential that this owner object be protected carefully.

Acl accessList = new AclImpl (owner, “exampleAcl”); In its final form, the access list
will contain a bunch of access list entries.

You can create these as follows:

AclEntry aclEntry = new AclEntryImpl (testUser);

aclEntry.addPermission(fileRead);

accessList.addEntry(owner, aclEntry);

The preceding lines create a new AclEntry object for the testUser, add the fileRead
permission to that entry, and then add the entry to the access control list. You can now
check the user permissions quite easily, as follows:

boolean isReadFileAuthorised = accessList.checkPermission(testUser,
readFile);

 Check Your Progress 2

1) Explain security provided by java?

………………………………………………….………………………………...

……………………………………………………………………………………

……………………………………………………………………………………

 22

Web Security
and Case Study 2.4 FORM BASED CUSTOM AUTHENTICATION

In this section, we will examine how to use form to authenticate clients.

2.4.1 Use of Forms to Authenticate Clients

A common way for servlet-based systems to perform authentication is to use the
session to store information indicating that a user has logged into the system. In this
scheme, the authentication logic uses the HttpSession object maintained by the servlet
engine in the Web server.

A base servlet with knowledge of authentication is helpful in this case. Using the
service method of the BaseServlet, the extending servlets can reuse the security
Check functionality.

The service method is shown in the following sample code snippet:

 Public void service(HttpServletRequest request, HttpServletResponse

response) throws IOException, ServletException

 {

 // check if a session has already been created for this user don’t create a new session

 HttpSession session = request.getSession(false);

 String requestedPage = request.getParameter(Constants.REQUEST);

 if (session != null)

 {

 // retrieve authentication parameter from the session

 Boolean isAuthenticated = (Boolean)

 session.getValue(Constants.AUTHENTICATION);

 // Check if the user is not authenticated

 if (!isAuthenticated.booleanValue())

 {

 // process the unauthenticated request

 unauthenticatedUser(response, requestedPage);

 }

 }

 else // session does not exist

 {

 // therefore the user is not authenticated process the unauthenticated request

 unauthenticatedUser(response, requestedPage);

 }

 }

http://www.javaworld.net/javaworld/jw-04-2000/jw-0428-websecurity.html##

23

Security

Implementation
The BaseServlet attempts to retrieve the session from the servlet engine. On retrieval,
the servlet verifies that the user has been granted access to the system. Should either
of these checks fail, the servlet redirects the browser to the login screen. On the login
screen, the user is prompted to give a username and password. Note that, the data
passed from the browser to the Web server is unencrypted unless you use Secure
Socket Layer (SSL).

The LoginServlet uses the username/password combination to query the database to
ensure that this user does indeed have access to the system. If, the check fails to return
a record for that user, the login screen is redisplayed. If, the check is successful, the
following code stores the user authentication information inside a session variable.

 // create a session

 session = request.getSession(true);

 // convert the boolean to a Boolean

 Boolean booleanIsAuthenticated = new Boolean (isAuthenticated);

 // store the boolean value to the session

 session.putValue(Constants.AUTHENTICATION, booleanIsAuthenticated);

This example assumes that any user who successfully authenticates to the system has
access to the pages displayed prior to login.

Providing Security through EJB’s in Java

In the EJB’s deployment descriptor, the following code identifies the access control

entries associated with the bean:

(accessControlEntries

DEFAULT [administrators basicUsers]

theRestrictedMethod [administrators]

); end accessControlEntries

Administrators have access to the bean by default and constitute the only user group
that has access to theRestrictedMethod. Once you’ve authorised that the
administrators have access to the bean, you now need to create properties detailing
which users are in the administrators group.

For this, the weblogic.properties file must include the following lines:

weblogic.password.SanjayAdministrator=Sanjay

weblogic.security.group.administrators=SanjayAdministrator

weblogic.password.User1Basic=User1

weblogic.security.group.basicUsers=User1Basic

The above method established the users who have access to the bean and have
restricted certain specific methods. This limits the potential for malicious attacks on
your Web server to reach the business logic stored in the beans.

 24

Web Security
and Case Study

The final step in this EJB authorisation is to establish the client connection to the
bean. The client must specify the username/password combination properly in order to
have access to the restricted bean or methods. For example client communication can
be as follows:

try{

Properties myProperties = new Properties();

myProperties.put(Context.INITIAL_CONTEXT_FACTORY,

" weblogic.jndi.T3InitialContextFactory");

myProperties.put(Context.PROVIDER_URL, "t3://localhost:7001");

myProperties.put(Context.SECURITY_PRINCIPAL, "Sanjay");

myProperties .put(Context.SECURITY_CREDENTIALS, "san");

ic = new InitialContext(myProperties);

}

catch (Exception e) { ... }

Since, you’ve passed the SanjayAdministrator user to the InitialContext, you’ll have
access to any method to which the administrators group has been granted access. If,
your application makes connections to external beans or your beans are used by
external applications, you should implement this security authorisation.

2.4.2 Use Java’s Multiple-Layer Security Implementation

The following examples are to demonstrate a complete system approach to the
security problem.

• In the first example, the form-based authentication scheme was implemented. It

checked only to ensure that the user was listed in the database of authenticated
users. A user listed in the database was granted access to all functionality within
the system without further definition.

• In the second example, the EJB authorised the user attempting to execute
restricted methods on the bean and this protects the bean from unauthorised
access, but does not protect the Web application.

• The third example, was that of the Java Security Access Control package is given
to explains how to use a simple API to verify that a user has access to a certain
functionality within the system. Using these three examples. It is possible to
create a simple authentication scheme that limits the user’s access to web-based
components of a system, including back-office systems.

Delegate Security to the Java Access Control Model

The first step is to create delegate classes to wrap the security functionality contained
in the Java Access Control Model classes. By wrapping the method calls and
interfaces, the developer can ensure that the majority of the code in the system can
function independently of the security implementation. In addition, through the
delegation pattern, the remainder of the code can perform security functionality
without obtaining specific knowledge of the inner workings of security model.

The first main component of this example is the User. The code that implements the
interface can delegate calls to the java.security.Principal interface.

25

Security

Implementation
For example, to retrieve a user’s telephone number, implement a method called
getPhoneNumber(). Another approach to obtaining this user data involves the use of
XML.Convert data stored in the database into an XMLDocument from which data
could be accessed by walking the tree.

The second main component is interface. The classes that implement this interface use
the implementation of the java.security.acl.Permission interface to execute their
functionality. In a Web-based system, there is a need to identify both the name of the
action and the URL related to that action.

The last major component is the WebSecurityManager object and this is responsible
for performing the duties related to user management, features management, and the
access control lists that establish the relationships between users and desired features.

WebSecurityManager can be implemented in many ways including, but not limited
to, a Java bean used by JSP, a servlet, an EJB, or a CORBA/RMI service. The choice
is with system’s designer. In this simple example, the WebSecurityManager is
assumed to run in the same JVM as the servlets/JSP.

In the following example it is assumed that: first, the information relating the users
and their permissions is stored in a relational database; second, this database is already
populated.

This example builds off of, the framework detailed in the prior example of servlet-
based user authentication. The service method is as under:

Public void service (HttpServletRequest request, HttpServletResponse response)

 throws IOException, ServletException

 {

// check if a session has already been created for this user don’t create a new session.

 HttpSession session = request.getSession(false);

 String sRequestedFeature = request.getParameter(Constants.FEATURE);

 if (session != null)

 {

 // retrieve User object

 User currentUser = (User) session.getValue(Constants.USER);

 Feature featureRequested = null;

 try {

 // get the page from Web Security Manager

 featureRequested = WebSecurityManager.getFeature(

sRequestedFeature);

 } catch (WebSecurityManagerException smE)

 {

 smE.printStackTrace();

 26

Web Security
and Case Study

 }

 if (WebSecurityManager.isUserAuthenticated(currentUser,

featureRequested))

 {

 // get page from feature

 String sRequestedPage = featureRequested.getFeaturePath();

 // redirect to the requested page

 response.sendRedirect(Constants.LOGIN2 + sRequestedPage);

 } else {

 // redirect to the error page

 response.sendRedirect(Constants.ERROR + sRequestedFeature);

 }

 } else {

 // redirect to the login servlet (passing parameter)

 response.sendRedirect(Constants.LOGIN2 + sRequestedFeature);

 }

 }

In this code, the user is authenticated against the access control list using the requested
feature name. The user object is retrieved from the session. The feature object
corresponding to the request parameter is retrieved from the SecurityManager object.
The SecurityManager then checks the feature against the access control list that was
created on the user login through the implementation of the access control list
interface.

Upon login, the username/password combination is compared to the data stored in the
database. If successful, the User object will be created and stored to the session. The
features related to the user in the database are created and added to an access control
list entry for the user. This entry is then added to the master access control list for the
application. From then on, the application can delegate the responsibility of securing
the application to the Java Access Control Model classes.

Here’s a code showing how the features are added to the access control list for a given
user.

 private static void addAclEntry(User user, Hashtable hFeatures)

 throws WebSecurityManagerException

 {

 // create a new ACL entry for this user

 AclEntry newAclEntry = new AclEntryImpl(user);

 // initialize some temporary variables

 String sFeatureCode = null;

 Feature feature = null;

27

Security

Implementation
 Enumeration enumKeys = hFeatures.keys();

 String keyName = null;

 while (enumKeys.hasMoreElements())

 {

 // Get the key name from the enumeration

 keyName = (String) enumKeys.nextElement();

 // retrieve the feature from the hashtable

 feature = (Feature) hFeatures.get(keyName);

 // add the permission to the aclEntry

 newAclEntry.addPermission(feature);

 }

 try {

 // add the aclEntry to the ACL for the _securityOwner

 _aclExample.addEntry(_securityOwner, newAclEntry);

 } catch (NotOwnerException noE)

 {

 throw new WebSecurityManagerException("In addAclEntry", noE);

 }

 }

The addAclEntry method is passed a User object and an array of Feature objects.
Using these objects, it creates an AclEntry and then adds it to the Acl used by the
application. It is precisely this Acl that is used by the BaseServlet2 to authenticate the
user to the system.

Conclusion

Securing a Web system is a major requirement this section has put forth a security
scheme that leverages the code developed by Sun Microsystems to secure objects in
Java. Although this simple approach uses an access control list to regulate user access
to protected features, you can expand it based on your requirements.

 Check Your Progress 3

1) Explain form based custom authentication methods used by servlets and EJB.

………………………………………………….………………………………...
……………………………………………………………………………………
……………………………………………………………………………………

2) What are the advantages of using Java’s multiple-layer security
implementation?
………………………………………………….………………………………...
……………………………………………………………………………………
……………………………………………………………………………………

 28

Web Security
and Case Study 2.5 RETRIEVING SSL AUTHENTICATION

The following section discuss the issues relating to SSL authentication.

2.5.1 SSL Authentication

SSL uses certificates for authentication — these are digitally signed documents which
bind the public key to the identity of the private key owner. Authentication happens at
connection time, and is independent of the application or the application protocol.

Certificates are used to authenticate clients to servers, and servers to clients; the
mechanism used is essentially the same in both cases. However, the server certificate
is mandatory — that is, the server must send its certificate to the client — but the
client certificate is optional: some clients may not support client certificates; other
may not have certificates installed. Servers can decide whether to require client
authentication for a connection.

A certificate contains

• Two distinguished names, which uniquely identify the issuer (the certificate
authority that issued the certificate) and the subject (the individual or
organisation to whom the certificate was issued). The distinguished names
contain several optional components:

o Common name
o Organisational unit
o Organisation
o Locality
o State or Province
o Country

• A digital signature. The signature is created by the certificate authority using the
public-key encryption technique:

i) A secure hashing algorithm is used to create a digest of the certificate’s
contents.

ii) The digest is encrypted with the certificate authority’s private key.
The digital signature assures the receiver that no changes have been made to
the certificate since it was issued:

a) The signature is decrypted with the certificate authority’s public key.
b) A new digest of the certificate’s contents is made, and compared with the

decrypted signature. Any discrepancy indicates that the certificate may have
been altered.

• The subject’s domain name. The receiver compares this with the actual sender
of the certificate.

 The subject’s public key. •

SSL Encryption

The SSL protocol operates between the application layer and the TCP/IP layer. This
allows it to encrypt the data stream itself, which can then be transmitted securely,
using any of the application layer protocols.

29

Security

Implementation
wo encryption techniques are used:

• cryption is used to encrypt and decrypt certificates during the SSL

•
andard), or triple DES, is used in the data transfer following the

handshake.

he SSL Handshake

 will use, and authenticate one
othe

 SSL version number and

•
ith the server’s private key. If , the client can

successfully decrypt the information with the server's public key, it is assured of

•

rypted with the client’s
private key. If, the server can successfully decrypt the information with the

•

 are symmetric keys which are
pt information during the SSL session. The keys are
grity of the data.

T

Public key en
handshake.
A mutually agreed symmetric encryption technique, such as DES (data
encryption st

T

The SSL handshake is an exchange of information that takes place between the client
and the server when a connection is established. It is during the handshake that client
and server negotiate the encryption algorithms that they
an r. The main features of the SSL handshake are:

The client and server exchange information about the •
the cipher suites that they both support.

The server sends its certificate and other information to the client. Some of the
information is encrypted w

the server’s identity.

If, client authentication is required, the client sends its certificate and other
information to the server. Some of the information is enc

client’s public key, it is assured of the client’s identity.

The client and server exchange random information which each generates and
which is used to establish session keys: these
used to encrypt and decry
also used to verify the inte

 Check Your Progress 4

1)

……………………

What do you understand by SSL Authentication?
………………………………………………….………………………………...
………………………………………………………………
……………………………………… ……………… ……………………………

entation can be used by WebLogic

utside the
.

a plic

•
applications is not supported. The SSL implementation that WebLogic Server

2.5.2 Using SSL Authentication in Java Clients

2.5.2.1 JSSE (Java Secure Socket Extesnsion) and Web Logic Server

JSSE is a set of packages that support and implement the SSL and TLS v1 protocols,
making those capabilities available. BEA WebLogic Server provides Secure Sockets
Layer (SSL) support for encrypting data transmitted between Web Logic Server
clients and servers, Java clients, Web browsers, and other servers. Web Logic Server’s
Java Secure Socket Extension (JSSE) implem
clients. Other JSSE implementations can be used for their client-side code o
server as well

The following restrictions apply when using SSL in WebLogic server-side
p ations:

The use of third-party JSSE implementations to develop WebLogic server

 30

Web Security
and Case Study ntations into WebLogic

•

f the

nJCE provider) that is included with JDK

ii) The nCipher JCE provider.

nt and WebLogic Server so that the
username and password do not flow in clear text.

2.5.2.2 Using JNDI Authentication

the InitialContext to look
up the resources it needs in the WebLogic Server JNDI tree.

 a user and the user’s credentials, set the JNDI properties listed in the
Table A.

Table A : JNDI Properties

uses is static to the server configuration and is not replaceable by user
applications. You cannot plug different JSSE impleme
Server to have it use those implementations for SSL.

The WebLogic implementation of JSSE does support JCE Cryptographic
Service Providers (CSPs), however, due to the inconsistent provider support
for JCE, BEA cannot guarantee that untested providers will work out o
box. BEA has tested WebLogic Server with the following providers:

i) The default JCE provider (Su

WebLogic Server uses the HTTPS port for SSL. Only SSL can be used on that port.
SSL encrypts the data transmitted between the clie

Java clients use the Java Naming and Directory Interface (JNDI) to pass on credentials
to the WebLogic Server. A Java client establishes a connection with WebLogic Server
by getting a JNDI InitialContext. The Java client then, uses

To specify

JNDI Properties Meaning

INITIAL_CONTEXT_FACTORY

actory is the
JNDI SPI for WebLogic Server.

Provides an entry point into the WebLogic Server
environment. The class
weblogic.jndi.WLInitialContextF

PROVIDER_URL ogic
Server that provides the name service.
Specifies the host and port of the WebL

SECURITY_PRINCIPAL er
ation to the

default (active) security realm.

Specifies the identity of the user when that us
authenticates the required inform

These properties are stored in a hash table that is passed to the InitialContext
constructor. Notice the use of t3s, which is a WebLogic Server proprietary versio
SSL. t3s uses encryption to protect the

n of
 connection and communication between

trates how to use one-way SSL certificate

mple1.0: Example of One-Way SSL Authentication Using JNDI

Y,

);

WebLogic Server and the Java client.

The following Example demons
authentication in a Java client.

Exa
...
Hashtable env = new Hashtable();
 env.put(Context.INITIAL_CONTEXT_FACTOR
 "weblogic.jndi.WLInitialContextFactory");
 env.put(Context.PROVIDER_URL, "t3s://weblogic:7002"

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/jndi/WLInitialContextFactory.html

31

Security

ImplementationREDENTIALS, "javaclientpassword");
 ctx = new InitialContext(env);

.5.2.3 SSL Certificate Authentication Development Environment

SL Authentication APIs

ation of Java SDK application programming interfaces (APIs) and WebLogic

APIs.

lists and describes the WebLogic APIs
used to implement certificate authentication.

Table B: Java SDK Certificate APIs Java SDK Certificate APIs

 env.put(Context.SECURITY_PRINCIPAL, "javaclient");
 env.put(Context.SECURITY_C

2

S

To implement Java clients that use SSL authentication on WebLogic Server, you use a
combin

Table B lists and describes the Java SDK APIs packages used to implement certificate
authentication. The information in Table B is taken from the Java SDK API
documentation and annotated to add WebLogic Server specific information. For more
information on the Java SDK APIs, Table C

Java SDK Certificate
APIs Java SDK
Certificate APIs

Description

javax.crypto
rations

y
e

,
age also supports

This package provides the classes and interfaces for
cryptographic operations. The cryptographic ope
defined in this package include encryption, ke
generation and key agreement, and Messag
Authentication Code (MAC) generation.

Support for encryption includes symmetric, asymmetric
block, and stream ciphers. This pack
secure streams and sealed objects.

Many classes provided in this package are provider-
based (see the java.security.Provider class). The class
itself defines a programming interface to which
applications may be written. The implementations
themselves may then be written by independent third-
party vendors and plugged in seamlessly as needed.
Therefore, application developers may take advantage of
any number of provider-based implementations without
having to add or rewrite the code.

javax.net
ing

sulate
socket creation and configuration behaviour.

This package provides classes for networking
applications. These classes include factories for creat
sockets. Using socket factories you can encap

javax.net.SSL

 package when you
use SSL with WebLogic Server.

While the classes and interfaces in this package are
supported by WebLogic Server, BEA recommends that
you use the weblogic.security.SSL

java.security.cert

upport for
X.509 v3 certificates and X.509 v2 CRLs.

This package provides classes and interfaces for parsing
and managing certificates, certificate revocation lists
(CRLs), and certification paths. It contains s

 32

Web Security
and Case Study java.security.KeyStore This class represents an in-memory collection of keys

and certificates. It is used to manage two types of
keystore entries:

• Key Entry : This type of keystore entry holds very
sensitive cryptographic key information, which is
stored in a protected format to prevent unauthorised
access.

Typically, a key stored in this type of entry is a
secret key, or a private key accompanied by the
certificate chain for the corresponding public key.

Private keys and certificate chains are used by a
given entity for self-authentication. Applications
for this authentication include software distribution
organisations which sign JAR files as part of
releasing and/or licensing software.

• Trusted Certificate Entry : This type of entry
contains a single public key certificate belonging to
another party. It is called a trusted certificate because
the keystore owner trusts that the public key in the
certificate indeed belongs to the identity identified by
the subject (owner) of the certificate.

This type of entry can be used to authenticate other
parties.

java.security.PrivateKey A private key. This interface contains no methods or
constants. It merely serves to group (and provide type
safety for) all private key interfaces.

Note: The specialised private key interfaces extend
this interface. For example, see the
DSAPrivateKey interface in
java.security.interfaces.

java.security.Provider This class represents a “Cryptographic Service Provider”
for the Java Security API, where a provider implements
some or all parts of Java Security, including:

• Algorithms (such, as DSA, RSA, MD5 or SHA-1).

•

 a
e

 code and creates a subclass of the
Provider class.

Key generation, conversion, and management
facilities (such, as for algorithm-specific keys).

Each provider has a name and a version number, and is
configured in each runtime it is installed in.

To supply implementations of cryptographic services,
team of developers or a third-party vendor writes th
implementation

javax.servlet.http.
HttpServletRequest

ce to

let’s

service methods (doGet, doPost, and so on).

This interface extends the ServletRequest interfa
provide request information for HTTP servlets.

The servlet container creates an HttpServletRequest
object and passes it as an argument to the serv

33

Security

Implementation

HttpServletResponse
rovide

t and
e servlet’s service methods

(doGet, doPost, and so on).

javax.servlet.http. This interface extends the ServletResponse interface to p

HTTP-specific functionality in sending a response. For
example, it has methods to access HTTP headers and cookies.

The servlet container creates an HttpServletRequest objec
passes it as an argument to th

javax.servlet.
ServletOutputStream

iner implements.
e

java.io.OutputStream.write(int) method.

This class provides an output stream for sending binary data to
the client. A ServletOutputStream object is normally retrieved
via the ServletResponse.getOutputStream() method.

This is an abstract class that the servlet conta
Subclasses of this class must implement th

javax.servlet.
ServletResponse

g a

 the
servlet’s service methods (doGet, doPost, and so on).

This class defines an object to assist a servlet in sendin
response to the client. The servlet container creates a
ServletResponse object and passes it as an argument to

ificate APIs WebLogic C Is

Table C: Web Logic Cert ertificate AP

web Logic Certificate APIs
WebLogic Certificate APIs

Description

weblogic.net.http.
HttpsURLConnection

Server acting as a client
to another WebLogic Server.

This class is used to represent a Hyper-Text Transfer
Protocol with SSL (HTTPS) connection to a remote
object. This class is used to make an outbound SSL
connection from a WebLogic

weblogic.security.SSL.
HostnameVerifierJSSE licy for

er name from the certificate

by

and SSL tab for the server (for example, myserver).

This interface provides a callback mechanism, so that
implementers of this interface can supply a po
handling the case where the host that’s being
connected to and the serv
SubjectDN must match.

To specify an instance of this interface to be used
the server, set the class for the custom host name
verifier in the Client Attributes fields that are located
on the Advanced Options panel under the Keystore

weblogic.security.SSL.
TrustManagerJSSE

icate chain and interrupt the handshake if
need be.

This interface permits the user to override certain
validation errors in the peer’s certificate chain and
allows the handshake to continue. This interface also
permits the user to perform additional validation on the
peer certif

weblogic.security.SSL.
SSLContext

n shared across
all sockets created under that context.
This class holds all the state informatio

weblogic.security.SSL.
SSLSocketFactory

ests to create SSL sockets to
the SSLSocketFactory.
This class delegates requ

 34

Web Security
and Case Study

•

• TPS to connect to a JSP served by an instance of WebLogic

•

 to and
ertificate Subject Distinguished Name

•

ber of times
ke takes place on a given SSL connection.

•

stManagerJSSE interface. It builds a certificate
turns true if it can be validated and is trusted for

.

•
This script compiles all the files required for the application and deploys

irectories.

e SSL

Thi c

ely From WebLogic Server to Other WebLogic

DI

me Verifier

SSL Client Application Components

At a minimum, an SSL client application comprises the following components:

• Java client

A Java client performs these functions:

• Initialises an SSLContext with client identity, a
HostnameVerifierJSSE, a TrustManagerJSSE, and a
HandshakeCompletedListener.

• Creates a keystore and retrieves the private key and certificate chain.

 Uses an SSLSocketFactory, and

Uses HT
Server.

HostnameVerifier

The HostnameVerifier implements the
weblogic.security.SSL.HostnameVerifierJSSE interface. It provides a
callback mechanism so that implementers of this interface can supply a
policy for handling the case where the host that is being connected
the server name from the c
(SubjectDN) must match.

HandshakeCompletedListener

The HandshakeCompletedListener implements the
javax.net.ssl.HandshakeCompletedListener interface. It defines how the
SSL client receives notifications about the completion of an SSL
handshake on a given SSL connection. It also defines the num
an SSL handsha

TrustManager

The TrustManager implements the
weblogic.security.SSL.Tru
path to a trusted root and re
client SSL authentication

build script (build.xml)

them to the WebLogic Server applications d

2.5.2.4 Writing Applications that Us

s se tion covers the following topics:

 Communicating Secur
Servers

 Writing SSL Clients

 Using Two-Way SSL Authentication

 Two-Way SSL Authentication with JN

 Using a Custom Host Na

35

Security

Implementation

e

ain, and getting/setting an SSLSocketFactory in order to create new SSL

s types of SSL clients.
am llowing types of SSL clients are provided:

Below, Example 1 shows a sample SSLClient, the relevant explanation is embeddede
f the same.

e

m;

;

f
ng SSL connections. It shows both how to

o this from a stand-alone application as well as from within

 Using a Trust Manager

 Using an SSLContext

 Using an SSL Server Socket Factory

 Using URLs to Make Outbound SSL Connections

Communicating Securely From WebLogic Server to Other WebLogic Servers

You can use a URL object to make an outbound SSL connection from a WebLogic
Server instance acting as a client to another WebLogic Server instance. The
weblogic.net.http.HttpsURLConnection class provides a way to specify the security
context information for a client, including the digital certificate and private key of th
client.
The weblogic.net.http.HttpsURLConnection class provides methods for determining
the negotiated cipher suite, getting/setting a host name verifier, getting the server’s
ertificate chc

sockets.

Writing SSL Clients

his section describes, by way of example, how to write variouT
Ex ples of the fo

• SSLClient

• SSLSocketClient

• SSLClientServlet

inside the code for easy understanding o

Example 1: SSL Client Sample Cod

package examples.security.sslclient;

import java.io.File;
import java.net.URL;
import java.io.IOException;
import java.io.InputStream;
import java.io.FileInputStrea
import java.io.OutputStream;
import java.io.PrintStream;
import java.util.Hashtable;
import java.security.Provider;
import javax.naming.NamingException;
import javax.naming.Context;
import javax.naming.InitialContext
import javax.servlet.ServletOutputStream;
import weblogic.net.http.*;
import weblogic.jndi.Environment;
/** SSLClient is a short example of how to use the SSL library o
 * WebLogic to make outgoi
 * d
 * WebLogic (in a Servlet).
 *
 */

 36

Web Security
and Case Study

[] argv)
 IOException {

ystem.out.println("example: java SSLClient wls
 server2.weblogic.com 80 443 /examplesWebApp/SnoopServlet.jsp");

t);
lse { // for null query, default page returned...

v[1], argv[2], argv[3], null, System.out);

.printStackTrace();
printSecurityProviders(System.out);

tic void printOut(String outstr, OutputStream stream) {

tStream)stream).print(outstr);

tream instanceof ServletOutputStream) {

turn;
 catch (IOException ioe) {

Exception: "+ioe.getMessage());
}

ream stream) {

roviders:\n");
.protocol.handler.pkgs - ");

col.handler.pkgs"));

roviders();
ength; i++)

"] - " + provs[i].getName() +
 " - " + provs[i].getInfo() + "\n");

nection(java.net.HttpURLConnection connection,
am stream)

public class SSLClient {
 public void SSLClient() {}
 public static void main (String
 throws
 if ((!((argv.length == 4) || (argv.length == 5))) ||
 (!(argv[0].equals("wls")))
) {
 S

 System.exit(-1);
 }
 try {
 System.out.println("----");
 if (argv.length == 5) {
 if (argv[0].equals("wls"))
 wlsURLConnect(argv[1], argv[2], argv[3], argv[4], System.ou
 } e
 if (argv[0].equals("wls"))
 wlsURLConnect(arg
 }
 System.out.println("----");
 } catch (Exception e) {
 e

 System.out.println("----");
 }
 }
 private sta
 if (stream instanceof PrintStream) {
 ((Prin
 return;
 } else if (s
 try {
 ((ServletOutputStream)stream).print(outstr);
 re
 }
 System.out.println(" IO

 }
 System.out.print(outstr);
 }
 private static void printSecurityProviders(OutputSt
 StringBuffer outstr = new StringBuffer();
 outstr.append(" JDK Protocol Handlers and Security P
 outstr.append(" java
 outstr.append(System.getProperties().getProperty(
 "java.proto
 outstr.append("\n");
 Provider[] provs = java.security.Security.getP
 for (int i=0; i<provs.l
 outstr.append(" provider[" + i +

 outstr.append("\n");
 printOut(outstr.toString(), stream);
 }
 private static void tryCon
 OutputStre
 throws IOException {

37

Security

Implementation
etResponseCode() + " -- " +

ponseMessage() + "\n\t\t" +
 connection.getContent().getClass().getName() + "\n";
onnection.disconnect();

his method contains an example of how to use the URL and
 using

static void wlsURLConnect(String host, String port,
tring sport, String query,

ex.jsp";
he following protocol registration is taken care of in the

stand alone
nection

Logic would work as expected.
= System.getProperties();

r.pkgs");

= "weblogic.net";
-1) {

gs", s);

istration
ut(" Trying a new HTTP connection using WLS client classes -

nteger.valueOf(port).intValue(), query);
RLConnection connection =

LConnection(wlsUrl);
ction, out);

t);
.printStackTrace();

 client classes -
ut);

), query);

ction(wlsUrl);

ert
r field in the Server Attributes

 connection.connect();
 String responseStr = "\t\t" +
 connection.g
 connection.getRes

 c
 printOut(responseStr, stream);
 }
 /*
 * T
 * URLConnection objects to create a new SSL connection,
 * WebLogic SSL client classes.
 */
 public
 S
 OutputStream out) {
 try {
 if (query == null)
 query = "/examplesWebApp/ind
 // T
 // normal startup sequence of WebLogic. It can be turned off
 // using the console SSL panel.
 //
 // we duplicate it here as a proof of concept in a
 // java application. Using the URL object for a new con
 // inside of Web
 java.util.Properties p
 String s = p.getProperty("java.protocol.handle
 if (s == null) {
 s
 } else if (s.indexOf("weblogic.net") ==
 s += "|weblogic.net";
 }
 p.put("java.protocol.handler.pk
 System.setProperties(p);
 printSecurityProviders(out);
 // end of protocol reg
 printO
 \n\thttp://" + host + ":" + port + query + "\n", out);
 URL wlsUrl = null;
 try {
 wlsUrl = new URL("http", host, I
 weblogic.net.http.HttpU
 new weblogic.net.http.HttpUR
 tryConnection(conne
 } catch (Exception e) {
 printOut(e.getMessage(), ou
 e
 printSecurityProviders(System.out);
 System.out.println("----");
 }
 printOut(" Trying a new HTTPS connection using WLS
 \n\thttps://" + host + ":" + sport + query + "\n", o
 wlsUrl = new URL("https", host, Integer.valueOf(sport).intValue(
 weblogic.net.http.HttpsURLConnection sconnection =
 new weblogic.net.http.HttpsURLConne
 // only when you have configured a two-way SSL connection, i.e.
 // Client Certs Requested and Enforced is selected in Two Way Client C
 // Behavio

 38

Web Security
and Case Study

der Keystore & SSL
ient cert chain

 File ClientKeyFile = new File ("clientkey.pem");

ists())

ln("Error : clientkey.pem/client2certs.pem
 is not present in this directory.");

atemycerts.");

putStream[2];

ntkey.pem");
;

[0], ins[1], pwd.toCharArray());
tion, out);

atch (Exception ioe) {
printOut(ioe.getMessage(), out);

 ioe.printStackTrace();
 }

cketClient sample demonstrates how to use SSL sockets to go directly to
e secure port to connect to a JSP served by an instance of WebLogic Server and

func

, and a

 chain

 Listener interface

e
y.SSL.HostnameVerifierJSSE class to verify that the server the

nning on the desired host

ent;

SE;

 // that are located on the Advanced Options pane un
 // tab on the server, the following private key and the cl
 // is used.

 File ClientCertsFile = new File ("client2certs.pem");
 if (!ClientKeyFile.exists() || !ClientCertsFile.ex
{
 System.out.print

 System.out.println("To create it run - ant cre
 System.exit(0);
}
 InputStream [] ins = new In
 ins[0] = new FileInputStream("client2certs.pem");
 ins[1] = new FileInputStream("clie
 String pwd = "clientkey"
 sconnection.loadLocalIdentity(ins
 tryConnection(sconnec
 } c

 }
}

Example 2: SSLSocketClient Sample Code

The SSLSo
th
display the results of that connection. It shows how to implement the following

tions:

• Initializing an SSLContext with client identity, a HostnameVerifierJSSE

TrustManagerJSSE

• Creating a keystore and retrieving the private key and certificate

• Using an SSLSocketFactory

• Using HTTPS to connect to a JSP served by WebLogic Server

Implementing the • javax.net.ssl.HandshakeCompleted

• Creating a dummy implementation of th
weblogic.securit
example connects to is ru

package examples.security.sslcli

import java.io.File;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.FileInputStream;
import java.util.Hashtable;
import java.security.KeyStore;
import java.security.PrivateKey;
import java.security.cert.Certificate;
import weblogic.security.SSL.HostnameVerifierJS

39

Security

Implementation
t weblogic.security.SSL.SSLContext;

 WebLogic Server

n("usage: java SSLSocketClient host sslport
 <HostnameVerifierJSSE>");

 443

://" + argv[0] + ":" + argv[1]);

hain
);

e"), null);
key", "testkey".toCharArray());
in("mykey");

actoryJSSE();

ocket(argv[0],

impor
import javax.net.ssl.SSLSocket;
import javax.net.ssl.SSLSession;
import weblogic.security.SSL.SSLSocketFactory;
import weblogic.security.SSL.TrustManagerJSSE;
 /**
 * A Java client demonstrates connecting to a JSP served by
 * using the secure port and displays the results of the connection.
 */
public class SSLSocketClient {
 public void SSLSocketClient() {}
 public static void main (String [] argv)
 throws IOException {
 if ((argv.length < 2) || (argv.length > 3)) {
 System.out.printl

 System.out.println("example: java SSLSocketClient server2.weblogic.com
 MyHVClassName");
 System.exit(-1);
 }
 try {
 System.out.println("\nhttps
 System.out.println(" Creating the SSLContext");
 SSLContext sslCtx = SSLContext.getInstance("https");
 File KeyStoreFile = new File ("mykeystore");
 if (!KeyStoreFile.exists())
{
 System.out.println("Keystore Error : mykeystore is not present in this
 directory.");
 System.out.println("To create it run - ant createmykeystore.");
 System.exit(0);
}
 System.out.println(" Initializing the SSLContext with client\n" +
 “ identity (certificates and private key),\n" +
 " HostnameVerifierJSSE, AND NulledTrustManager");
 // Open the keystore, retrieve the private key, and certificate c
 KeyStore ks = KeyStore.getInstance("jks"
 ks.load(new FileInputStream("mykeystor
 PrivateKey key = (PrivateKey)ks.getKey("my
 Certificate [] certChain = ks.getCertificateCha
 sslCtx.loadLocalIdentity(certChain, key);
 HostnameVerifierJSSE hVerifier = null;
 if (argv.length < 3)
 hVerifier = new NulledHostnameVerifier();
 else
 hVerifier = (HostnameVerifierJSSE) Class.forName(argv[2]).newInstance();
 sslCtx.setHostnameVerifierJSSE(hVerifier);
 TrustManagerJSSE tManager = new NulledTrustManager();
 sslCtx.setTrustManagerJSSE(tManager);
 System.out.println(" Creating new SSLSocketFactory with SSLContext");
 SSLSocketFactory sslSF = (SSLSocketFactory) sslCtx.getSocketF
 System.out.println(" Creating and opening new SSLSocket with
 SSLSocketFactory");
 // using createSocket(String hostname, int port)
 SSLSocket sslSock = (SSLSocket) sslSF.createS
 new Integer(argv[1]).intValue());
 System.out.println(" SSLSocket created");
 sslSock.addHandshakeCompletedListener(new MyListener());
 OutputStream out = sslSock.getOutputStream();

 40

Web Security
and Case Study ebApp/ShowDate.jsp HTTP/1.0\r\n\r\n";

write(req.getBytes());
etrieve the InputStream and read the HTTP result, displaying

sole
tStream in = sslSock.getInputStream();

4];

ile (true)

);
if (amt == -1) break;

.out.write(buf, 0, amt);

sslSock.close();

 System.out.println(" SSLSocket closed");
 } catch (Exception e) {

 }

le Code

e code is given below. For easy understanding details

lient;

rt java.io.InputStream;

ort javax.servlet.*;

etResponse response)

nse.setHeader("Pragma", "no-cache"); // HTTP 1.0
TTP 1.1
;

t.getParameterValues("url");

 // Send a simple HTTP request
 String req = "GET /examplesW
 out.
 // R
 // it on the con
 Inpu
 byte buf[] = new byte[102
 try
 {
 wh
 {
 int amt = in.read(buf

 System
 }
 }
 catch (IOException e)
 {
 return;
 }

 e.printStackTrace();
 }

}

Example 3: SSLClientServlet Samp

The SSL ClientServlet Sampl
are provided inside the code.

package examples.security.sslc

import java.io.IOException;
impo
import java.io.OutputStream;
import java.util.Enumeration;
imp
import javax.servlet.http.*;
/**
 * SSLClientServlet is a simple servlet wrapper of
 * examples.security.sslclient.SSLClient.
 *
 */
public class SSLClientServlet extends HttpServlet {
 public void service(HttpServletRequest request, HttpServl
 throws ServletException, IOException {
 response.setContentType("text/html");
 respo
 response.setHeader("Cache-Control", "no-cache"); // H
 ServletOutputStream out = response.getOutputStream()
 out.println("
<h2>ssl client test</h2>
<hr>");
 String[] target = reques
 try {

41

Security

Implementationlhost 7001 7002
p/SnoopServlet.jsp
");

nect("localhost", "7001", "7002",
 "/examplesWebApp/SnoopServlet.jsp", out);

out.println("</pre>
<hr>
");
 } catch (IOException ioe) {

 out.println ("
<pre> "+ioe.getMessage () +"</pre>");

ng Two-Way SSL Authentication

utual authentication), the requesting
client also presents a digital certificate to WebLogic Server. When the instance of

tes from a specified set of certificate authorities.
WebLogic Server accepts only digital certificates that are signed by root certificates

m

implem

nces

cation with JNDI

ic key for the Java

rtificate authority registered for
the Java client in the WebLogic Server keystore file.

n use the weblogic.security.PEMInputStream class to read digital certificates
stored in Privacy Enhanced Mail (PEM) files. This class provides a filter that decodes

 out.println ("<h3>wls ssl client classes</h3>
");
 out.println ("java SSLClient wls loca
 /examplesWebAp
 out.println("<pre>");
 SSLClient.wlsURLCon

 ioe.printStackTrace ();
 }
 }
}

Usi

When using certificate authentication, WebLogic Server sends a digital certificate to
the requesting client. The client examines the digital certificate to ensure that it is
authentic, has not expired, and matches the WebLogic Server instance that presented
it.

With two-way SSL authentication (a form of m

WebLogic Server is configured for two-way SSL authentication, requesting clients are
required to present digital certifica

fro the specified trusted certificate authorities.

The following sections describe the different ways two-wa
ented in WebLogic Server.

y SSL authentication can be

• Two-way SSL Authentication with JNDI
• Using Two-way SSL Authentication Between WebLogic Server Insta
• Using Two-way SSL Authentication with Servlets

Two-Way SSL Authenti

While using JNDI for two-way SSL authentication in a Java client, use the
setSSLClientCertificate() method of the WebLogic JNDI Environment class. This
method sets a private key and chain of X.509 digital certificates for client
authentication.

For passing digital certificates to JNDI, create an array of InputStreams opened on
files containing DER-encoded digital certificates and set the array in the JNDI hash
table. The first element in the array, must contain an InputStream opened on the Java
client’s private key file. The second element, must contain an InputStream opened on
the Java client's digital certificate file. (This file contains the publ
client.) Additional elements, may contain the digital certificates of the root certificate
authority and the signer of any digital certificates in a certificate chain. A certificate
chain allows WebLogic Server to authenticate the digital certificate of the Java client
if that digital certificate was not directly issued by a ce

You ca

the base 64-encoded DER certificate into a PEM file.

 42

Web Security
and Case Study

-Way SSL Authentication Client That Uses

se two-way SSL authentication in a Java client.

ext;
xception;

ort java.io.InputStream;
;

ass SSLJNDIClient

] args) throws Exception

t ();

ic");

);
rts/democert.pem");

SLClientCertificate (new InputStream [] {key, cert});
itialContextFactory(Environment.

EXT_FACTORY);
ontext = env.getInitialContext ();

Object myEJB = (Object) context. lookup ("myEJB");
 }

 finally {

meMapper
interface. The class that implements the UserNameMapper interface returns a user

user
he Java client’s thread in WebLogic Server and uses it for subsequent

uthorisation requests when the thread attempts to use WebLogic resources protected

You can use two-way SSL authentication in server-to-server communication in which
r

-secure connections, even without the more
common client/server environment.

Example 4: Example of a Two
JNDI

This example demonstrates how to u

import javax.naming.Context;
import javax.naming.InitialCont
import javax.naming.NamingE
import weblogic.jndi.Environment;
import weblogic.security.PEMInputStream;
imp
import java.io.FileInputStream
Public cl
{
 public static void main (String [
 {
 Context context = null;
 try {
 Environment env = new Environmen
 // set connection parameters
 env.setProviderUrl("t3s://localhost:7002");
 // The next two set methodes are optional if you are using
 // a UserNameMapper interface.
 env.setSecurityPrincipal("system");
 env.setSecurityCredentials("weblog
 InputStream key = new FileInputStream("certs/demokey.pem"
 InputStream cert = new FileInputStream("ce
 // wrap input streams if key/cert are in pem files
 key = new PEMInputStream(key);
 cert = new PEMInputStream(cert);
 env.setS
 env.setIn
 DEFAULT_INITIAL_CONT
 c

 if (context != null) context.close ();
 }
 }
}

The code in Example 4 generates a call to the WebLogic Identity Assertion provider
that implements the weblogic.security.providers.authentication.UserNa

object if the digital certificate is valid. WebLogic Server stores this authenticated
object on t
a
by the default (active) security realm.

Example 5: Establishing a Secure Connection to Another WebLogic Server
Instance

one WebLogic Server instance is acting as the client of another WebLogic Serve
instance. Using two-way SSL authentication in server-to-server communication
enables you to have dependable, highly

43

Security

Implementation
ish a secure connection from a
ver to a second WebLogic Server

eam[3];

democert.pem");

.setProviderURL("t3s://server2.weblogic.com:443");
);

cc27ee5c345ef26");

di.WLInitialContextFactory");
Context ctx = new InitialContext(e.getProperties())

In Ex the
follow

•

.

• SL
ethod to specify an input stream array that consists

cate

•
acting as the SSL server. When the SSL server presents its digital certificate

• setSSLRootCAFingerprint—specifies digital codes that represent a set of
 in the certificate chain

ing as the SSL server has to

ust
ther the

ted certificate authority. The servlet developer is
responsible for asking whether the Java client has a valid digital certificate. When

information
ribute () method of the

TP

This example shows an example of how to establ
servlet running in one instance of WebLogic Ser
instance called server2.weblogic.com.

FileInputStream [] f = new FileInputStr
 f[0]= new FileInputStream("demokey.pem");
 f[1]= new FileInputStream("
 f[2]= new FileInputStream("ca.pem");
Environment e = new Environment ();
e
e.setSSLClientCertificate(f
e.setSSLServerName("server2.weblogic.com");
e.setSSLRootCAFingerprints("ac45e2d1ce492252a

e.setInitialContextFactory
 ("weblogic.jn

ample 5, the WebLogic JNDI Environment class creates a hash table to store
ing parameters:

setProviderURL—specifies the URL of the WebLogic Server instance acting
as the SSL server. The WebLogic Server instance acting as SSL client calls
this method. The URL specifies the t3s protocol which is a WebLogic Server
proprietary protocol built on the SSL protocol. The SSL protocol protects the
connection and communication between the two WebLogic Servers instances

setSSLClientCertificate—specifies a certificate chain to be used for the S
connection. You use this m
of a private key (which is the first input stream in the array) and a chain of
X.509 certificates (which make up the remaining input streams in the array).
Each certificate in the chain of certificates is the issuer of the certifi
preceding it in the chain.

setSSLServerName—specifies the name of the WebLogic Server instance

to the server acting as the SSL client, the name specified using the
setSSLServerName method is compared to the common name field in the
digital certificate. In order for hostname verification to succeed, the names
must match. This parameter is used to prevent man-in-the-middle attacks.

trusted certificate authorities. The root certificate
received from the WebLogic Server instance act
match one of the fingerprints specified with this method to be trusted. This
parameter is used to prevent man-in-the-middle attacks.

Using Two-Way SSL Authentication with Servlets

To authenticate Java clients in a servlet (or any other server-side Java class), you m
check whether the client presented a digital certificate and if so, whe
certificate was issued by a trus

developing servlets with the WebLogic Servlet API, you must access
about the SSL connection through the getAtt
HT ServletRequest object.

 44

Web Security
and Case Study

•

et.ssl.SSLSession—returns the SSL session object that contains the
nd last used.

java.s
certifi

dig ormation, such as the following:

the unique identity of the subject, such as the uniform

• The subject's public key.

e.

de

ection is made is the
 a WebLogic client
 application server.

t that’s being connected to and the server
ame from the certificate SubjectDN must match.

ebLogic SSL
ase,

emocertificate’s SubjectDN CommonName is ‘bea.com’ and the
Logic HostnameVerifierJSSE does a String.equals () on

The following attributes are supported in WebLogic Server servlets:

• javax.servlet.request.X509Certificate
java.security.cert.X509Certificate []—returns an array of the X.509
certificate.

javax.servlet.request.cipher_suite—returns a string representing the cipher
suite used by HTTPS.

• javax.servlet.request.key_size— returns an integer (0, 40, 56, 128, 168)
representing the bit size of the symmetric (bulk encryption) key algorithm.

• weblogic.servlet.request.SSLSession
javax.n
cipher suite and the dates on which the object was created a

You have access to the user information defined in the digital certificates. When you
get the javax.servlet.request.X509Certificate attribute, it is an array of the

ecurity.cert X.509 certificate. You simply cast the array to that and examine the
cates.

A ital certificate includes inf

• The name of the subject (holder, owner) and other identification information
required to verify
resource locator (URL) of the Web server using the digital certificate, or an
individual user’s e-mail address.

• The name of the certificate authority that issued the digital certificat

• A serial number.

• The validity period (or lifetime) of the digital certificate (as defined by a start
date and an end date).

Example 6: Host Name Verifier Sam

A host name verifier validates that the host to which an SSL conn
intended or authorised party. A host name verifier is useful when
or a WebLogic Server instance is acting as an SSL client to another
It helps prevent man-in-the-middle attacks.

ple Co

The following program verify the host name.
Package examples.security.sslclient;
/**
 * HostnameVerifierJSSE provides a callback mechanism so that
 * implementers of this interface can supply a policy for handling
 * the case where the hos
 * n
 *
 * This is a null version of that class to show the W
 * client classes without major problems. For example, in this c
 * the client code connects to a server at ‘localhost’ but the
 * d
 * default Web

45

Security

Implementation
ose two hostnames.

 */

ents
VerifierJSSE {

xample 7: TrustManager Code Example

he weblogic.security.SSL.TrustManagerJSSE interface allows you to override
ntinue the SSL handshake. You

SSL handshake by performing additional

curity.cert.X509Certificate;
lic class NulledTrustManagerJSSE implements TrustManagerJSSE {

ublic boolean certificateCallback(X509Certificate[] o, int validateErr) {

ly lost.\n --------------------------------");
 for (int i=0; i<o.length; i++)

" -- " + o[i].toString());
 return true;

istener Code Example

ndshakeCompletedListener interface defines how the SSL client
e completion of an SSL protocol handshake on a given

es the number of times an SSL handshake takes place on
ple 8 shows a HandshakeCompletedListener interface

is given below:

ort java.io.IOException;

rt java.io.FileInputStream;

 * th
 *

Public class NulledHostnameVerifier implem
 weblogic.security.SSL.Hostname
 public boolean verify(String urlHostname, String certHostname)
 {
 return true;
 }
}

E

T
validation errors in a peer’s digital certificate and co
can also use the interface to discontinue an
validation on a server’s digital certificate chain.

The following is a example TrustManager

Package examples.security.sslclient;

import weblogic.security.SSL.TrustManagerJSSE;
import javax.se
Pub
 p
 System.out.println(" --- Do Not Use In Production ---\n" + " By using this " +
 "NulledTrustManager, the trust in the server’s identity "+
 "is complete

 System.out.println(" certificate " + i +

 }
}
The SSLSocketClient example uses the custom trust manager shown above. The
SSLSocketClient shows how to set up a new SSL connection by using an SSL context
with the trust manager.

Using a Handshake Completed Listener

Example 8: HandshakeCompletedL

The javax.net.ssl.Ha
receives notifications about th
SSL connection. It also defin
a given SSL connection. Exam
code example. A sample coding

Package examples.security.sslclient;

import java.io.File;
imp
import java.io.InputStream;
import java.io.OutputStream;
impo
import java.util.Hashtable;
import javax.net.ssl.HandshakeCompletedListener;
import javax.net.ssl.SSLSession;

 46

Web Security
and Case Study

ner

void handshakeCompleted(javax.net.ssl.
 HandshakeCompletedEvent event)

LSession session = event.getSession();

 session.getPeerHost());
ntln(" cipher: " + session.getCipherSuite());

ax.security.cert.X509Certificate[] certs = null;

eption puv)

s = null;

System.out.println(" peer certificates:");
 for (int z=0; z<certs.length; z++) System.out.

 println("certs["+z+"]: " + certs[z]);

 presented");

figure SSL and retain SSL
t factories

rovided by the SSLContext class can agree on session state by using the handshake
xt. Each instance can be configured with the

eys, certificate chains, and trusted root certificate authorities that it needs to perform
kets created under the same

SL context can potentially reuse them later. For more information on session caching

eblogic.security.SSL.SSLContext.setTrustManagerJSSE () method

Example 10: SSLServerSocketFactory Code Example

Instances of the SSLServerSocketFactory class create and return SSL sockets. This
class extends javax.net.SocketFactory. A sample code is given below:

import weblogic.security.SSL.SSLSocketFactory;
 SSLSocketFactory sslSF = (SSLSocketFactory) sslCtx.getSocketFactoryJSSE();

 public class MyListener implements HandshakeCompletedListe
 {
 public

 {
 SS
 System.out.println("Handshake Completed with peer " +

 System.out.pri
 jav
 try
 {
 certs = session.getPeerCertificateChain();
 }
 catch (javax.net.ssl.SSLPeerUnverifiedExc
 {
 cert
 }
 if (certs != null)
 {

 }
 else
 {
 System.out.println("No peer certificates
 }
 }
 }

Using an SSLContext

Example 9: SSL Context Code Example

import weblogic.security.SSL.SSLContext;
SSLcontext sslctx = SSLContext.getInstance ("https")
The SSLContext class is used to programmatically con
session information. For example, all sockets that are created by socke
p
protocol associated with the SSL conte
k
authentication. These sessions are cached so that other soc
S
see SSL Session Behavior in Managing WebLogic Security. To associate an instance
of a trust manager class with its SSL context, use the
w

Using an SSL Server Socket Factory

47

Security

Implementation
Using URLs to Make Outbound SSL Connections

Example 11: One-Way SSL Authentication URL Outbound SSL Connection
Class
You can use a URL object to make an outbound SSL connection from a WebLogic
Server instance acting as a client to another WebLogic Server instance. WebLogic
Server supports both one-way and two-way SSL authentication for outbound SSL
connections.
That Uses Java Classes Only
import java.net.URL;
import java.net.URLConnection;
import java.net.HttpURLConnection;
import java.io.IOException;
Public class simpleURL
{
 public static void main (String [] argv)
 {
 if (argv.length != 1)
 {
 System.out.println("Please provide a URL to connect to");
 System.exit(-1);
 }
 setupHandler();
 connectToURL(argv[0]);
 }
 private static void setupHandler()
 {
 java.util.Properties p = System.getProperties();
 String s = p.getProperty("java.protocol.handler.pkgs");
 if (s == null)
 s = "weblogic.net";
 else if (s.indexOf("weblogic.net") == -1)
 s += "|weblogic.net";
 p.put("java.protocol.handler.pkgs", s);
 System.setProperties(p);
 }
 private static void connectToURL(String theURLSpec)
 {
 try
 {
 URL theURL = new URL(theURLSpec);
 URLConnection urlConnection = theURL.openConnection();
 HttpURLConnection connection = null;
 if (!(urlConnection instanceof HttpURLConnection))
 {
 System.out.println("The URL is not using HTTP/HTTPS: " +
 theURLSpec);
 return;
 }
 connection = (HttpURLConnection) urlConnection;
 connection.connect();
 String responseStr = "\t\t" +
 connection.getResponseCode() + " -- " +
 connection.getResponseMessage() + "\n\t\t" +
 connection.getContent().getClass().getName() + "\n";
 connection.disconnect();
 System.out.println(responseStr);
 }
 catch (IOException ioe)

 48

Web Security
and Case Study

 {
 System.out.println("Failure processing URL: " + theURLSpec);
 ioe.printStackTrace();
 }
 }
}

WebLogic Two-Way SSL Authentication URL Outbound SSL Connection

Example 12: WebLogic Two-Way SSL Authentication URL Outbound SSL
Connection Code Example

For two-way SSL authentication, the weblogic.net.http.HttpsURLConnection class
provides a way to specify the security context information for a client, including the
digital certificate and private key of the client. Instances of this class represent an
HTTPS connection to a remote object.

wlsUrl = new URL ("https", host, Integer.valueOf(sport).intValue(),
 query);
weblogic.net.http.HttpsURLConnection sconnection =
 new weblogic.net.http.HttpsURLConnection(wlsUrl);
InputStream [] ins = new InputStream[2];
 ins[0] = new FileInputStream("client2certs.pem");
 ins[1] = new FileInputStream("clientkey.pem");
 String pwd = "clientkey";
 sconnection.loadLocalIdentity(ins[0], ins[1], pwd.toCharArray());

 Check Your Progress 5

1) Compare and Contrast SSL Authentication in Java Clients.

………………………………………………….………………………………...
……………………………………………………………………………………
……………………………………………………………………………………

2) JSSE and Web Logic Server.

………………………………………………….………………………………...
……………………………………………………………………………………
……………………………………………………………………………………

3) What is JNDI Authentication?Explian with suitable example.

………………………………………………….………………………………...
……………………………………………………………………………………
……………………………………………………………………………………

2.6 SUMMARY

Software authentication enables a user to authenticate once and gain access to the
resources of multiple software systems. Securing a Web system is a major
requirement for the development team.

This unit has put forth a security scheme that leverages the code developed by Sun
Microsystems to secure objects in Java. Although this simple approach uses an access
control list to regulate user access to protected features, you can expand it based on

http://en.wikipedia.org/wiki/Authentication

49

Security

Implementation
the requirements of your user community to support additional feature-level variations
or user information.

2.7 SOLUTIONS/ANSWERS

Check Your Progress 1

1) System Architecture Vulnerabilities can result in violations of security policy.

This may please flaw in system design, poor security parameters, open ports,
poor management, access control vulnerabilities etc. This include covert
channel analysis, maintenance hook or back door or trap doors, buffer overflow
etc.

2) Code reviews and unit integration testing, Host intrusion detection system, Use

file permissions to protect configuration files and sensitive information from
being modified, Strict access control, File system encryption, Auditing.

3) Fault-tolerant System, Failsafe system, failsoft or resilient, Failover, and Cold

Start.

Check Your Progress 2

1) Discuss java.security.acl class and its features with suitable example. There is a

package, java.security.acl, that contains several classes that you can use to
establish a security system in Java. These classes enable your development team
to specify different access capabilities for users and user groups. The concept is
fairly straightforward. A user or user group is granted permission to
functionality by adding that user or group to an access control list.

Check Your Progress 3

1) Discuss the example or similar example as shown in 2.4.2.

2) Implementation without knowledge of inner working of the Operating System,
platform independence, enhancing security with multiple security features, In
addition, a J2EE server without much customisation may support the EJB
mapping that was described earlier in the article. Java also provides some other
additional methods of security ranging from digital signatures to the JAAS
specification that can be used to protect the class files against unauthorized
access.

Check Your Progress 4

1) Discuss SSL Authentication that takes place between the Application layer and
the TCP/IP layer. The SSL protocol operates between the application layer and
the TCP/IP layer. This allows it to encrypt the data stream itself, which can then
be transmitted securely, using any of the application layer protocols. In this both
symmetric and asymmetric encryption is used.

Check Your Progress 5

1) Hint: Discuss JSSE set of packages that support and implement the SSL.

Discuss

2) Web Logic Server’s Java Secure Socket Extension (JSSE) implementation can

be used by WebLogic clients. Other JSSE implementations can be used for their
client-side code outside the server as well.

 50

Web Security
and Case Study

3) Java clients use the Java Naming and Directory Interface (JNDI) to pass
credentials to WebLogic Server. A Java client establishes a connection with
WebLogic Server by getting a JNDI InitialContext. The Java client then
uses the InitialContext to look up the resources it needs in the WebLogic
Server JNDI tree. Please discuss with suitable example.

2.8 FURTHER READINGS/REFERENCES

• Stalling William, Cryptography and Network Security, Principles and Practice,

2000, SE, PE.

• Daview D. and Price W., Security for Computer Networks, New York:Wiley,

1989.

• Chalie Kaufman, Radia Perlman, Mike Speciner, Network Security,
 Pearson Education.

• B. Schnier, Applied Cryptography, John Wiley and Sons

• Steve Burnett & Stephen Paine, RSA Security’s Official Guide to Practice, SE,

PE.

• Dieter Gollmann, Computer Security, John Wiley & Sons.

Reference websites:

• World Wide Web Security FAQ:
 http://www.w3.org/Security/Faq/www-security-faq.html

• Web Security: http://www.w3schools.com/site/site_security.asp

• Authentication Authorisation and Access Control:

http://httpd.apache.org/docs/1.3/howto/auth.html

• Basic Authentication Scheme:

http://en.wikipedia.org/wiki/Basic_authentication_scheme

• OpenSSL Project: http:/www.openssl.org

• Request for Comments 2617 : http://www.ietf.org/rfc/rfc2617.txt

• cification: Sun Microsystems Enterprise JavaBeans Spe

http://java.sun.com/products/ejb/docs.html.

• Javabeans Program Listings: http:/e-docs.bea.com

 51

Case Study

UNIT 3 CASE STUDY

Structure Page Nos.

3.0 Introduction 51
3.1 Solution Overview 52
3.2 Solution Architecture View 53
3.3 Presentation Layer 53
3.4 Business Process Layer 56
3.5 Enterprise Application Integration Layer 57
3.6 High Level Functional Architecture 58
3.7 Presentation Layer Packages 59
3.8 Business Process Layer Packages 60
3.9 Business Function Layer Packages 60
3.10 Specific Solution Usability Related Elements 61
3.11 Summary 62

3.0 INTRODUCTION

The XYZ Bank has embarked on a significant strategic programme, which aims to replace
major parts of the Bank’s technology. The existing infrastructure has been designed as
‘stove-pipes’ for each delivery channel, which is restricting the flexibility of on-going
developments. The Bank has now reached the position, where it cannot sustain further
developments, which are required in support of the Bank’s business strategy particularly
with regards to the growth of, and interaction with, customers, products and channels. Most
of the current applications are running on legacy applications.

The XYZ bank is looking for a solution, which will establish a platform that will allow
longer-term technology implications. The scope of the solution covers the existing business
functionality that is available within the Internet Banking System, and the bank’s teller
application that is available within the Branch Network. The scope of the project is
restricted to ‘migrate the existing functionality’ onto a new infrastructure and architecture,
and does not allow the introduction of any new business functionality.

The key business drivers are:

• To deliver an effective platform for multi-channel access to Personal Banking
information processing services that will support effective integration of the Bank.

• To deliver an infrastructure that has a lifespan and lifecycle in line with the Bank’s
strategic requirements and that, which reflects the strategic nature of the investment.

• To provide improved capacity for any future developments of browser-based,
Personal banking information processing services.

To provide an environment that facilitates the introduction of• the Euro currency in

 To make use of acknowledged industry standards, technologies and best practices.

 of the solution, covering both

 be
undertaken during the lifecycle of the project.

terms of identifying the particular currency that is tendered.

•

To have regard for the overall cost of ownership•
development costs and ongoing lifetime costs.

There is no scope for significant core systems (mainframe) re-engineering work to•

52

Web Security
and Case Study 3.1 SOLUTION OVERVIEW

The solution provides an ‘Integration Layer’ that enables multi-channel access from the
Bank’s browser-based delivery channels, both internal and external, to its main Personal
Banking information processing services, primarily running on the Banks existing
mainframe environment. It supports account applications and account transaction services
for customer and internal staff, accessed over the Internet or via the bank’s intranet. The
solution is designed to run on a completely new set of mid-tier devices, using the IBM
WebSphere product stack running on IBM’s AIX operating system, and is based entirely
on J2EE development technologies.

Key Issues

• The need to provide a robust, flexible and future proof (ten years) mechanism for

internal and external multi-channel access to Bank Account Applications and
Transactions.

• Addressing this issue would be the foundation of the architecture and design of the
solution.

• The software architecture has been designed to support this, but may be limited by
incompatibilities in the infrastructure, information and functional architectures.

The need to adopt new • working methods and skills in support of component-based

• have received external consultancy in the use of new

 use of sub

• rity

mainframe. In addition, both customers and Bank staff can access and use the
n via their existing workstations and network infrastructure.

 ssed by extending the support contracts with the current provider to

• sed set of products and configurations is relatively complex and untested.

• he complete set of skills needed to deliver the solution is in short supply within the
industry.

iterative development.

The team have been trained and
methods, techniques and tools.

The need to deliver effective documentation for the project and the•
systems and components that may also be used in other solutions.

Currently there is little design documentation apart from the source code and •
configuration scripts, although this has begun to be addressed.

• The need to re-use as much as possible of the existing systems.

Whilst the multi-channel integration layer is based on new technology, the majo
of the business function processing and information storage remains on the

solutio

Key Risks

• The previous technology has no future development path and has reducing levels of
support.

To be a addre•
cover the expected time until the future iterations enable complete replacement of the
old solution.

The propo

T

 53

3.2 SOLUTION ARCHITECTURE VIEW

In essence, the solution provides an ‘Integration Layer’ that enables multi-channel access
from the Bank’s delivery channels, both internal and external, to the main Personal
Banking information processing se

Case Study

rvices, primarily running on the existing Bank
ainframe environment. It supports account applications and account transaction services

are architecture (see Figure 1) is based on the bank’s Software
Layering Model, with the solution being constructed in a modular fashion and
implementing discrete resp d
Business Function.

m
to customers, as well as providing a mechanism for customers and internal staff to
communicate in a secure manner.

The high-level softw

onsibilities for Presentation, Business Process, EAI an

Business Function

Enterprise Application Integration

Presentation

Business Process

Application Frameworks
and

Software Serv ices

Figure 1: Software layering diagram

h
technologies. Without exception, all the business

rocesses that have been developed are ‘single-shot’ tasks and there has been no

 Business Function layer already existed on the mainframe, though it has been
re-developed (where economically viable) to provide increased modularity and has been

ecific business

The Presentation layer only supports browser-based channels, via the delivery of HTML
generated by Java Server Pages.

The term ‘Integration Layer’ loosely refers to the Business Process and EAI layers, whic
are based entirely on J2EE development
p
requirement for any long-running processes that would have necessitated some form of
business process engine (workflow).

Most of the

made available via a generic CICS transaction interface that calls sp
functions.

3.3 PRESENTATION LAYER

Figure 2 identifies the significant software components and indicates how these map to the
high-level software packages (shown in grey) that are described within the bank’s Software
Layering Model.

54

Web Security
and Case Study

Presentation Layer

Channel Interface

Presentation Logic

« Java »
Business

Process Proxy

« Java »
Action

Presentation
Data

Java
Java

HTML/HTTPS

« Servlet »
Controller

« JSP »
View Java

« Java »
Navigation

Java

Java

« Java »
View Helper

Java

Java

« Java »
FormJava

RMI-IIOP

Java

Java

« Java »
Data Validation

« HTML »
Graphical User

Interface

is a
uction issues

cant bugs are found in the Struts code. This risk is considered acceptable
ailable for update if required and the Java skills needed are

ing

ented as a servlet of class ActionServlet. This servlet is configured by defining a set
appings, which in turn define paths that are matched against the incoming

omponents represent presentation layer state at a session or request level (not at a
tent level).

Figure 2: Presentation layer software context diagram

The Struts framework (from the open source Apache Software Foundation) should be used
as the basis for the presentation layer. Struts utilises open standard technologies and
encourages software architectures based on the Model-View-Controller (MVC) Model 2
design pattern. The framework was selected since it is one of the most widely adopted web
presentation frameworks available off-the-shelf and if significantly reduces the
development effort required on the project. As this is an open source framework there

sk that a lack of a formal support contract from a supplier could lead to prodri
if any signifi
since, the source code is av
prevalent on the project and will remain in the production support teams.

Controller

Controller components are responsible for receiving requests from the browser, decid
what business logic function is to be performed, and then delegating responsibility for
producing the next stage of the user interface to an appropriate View component.

ithin Struts, the primary component of the Controller is a command design pattern W
implem
of ActionM
requests and usually specifies the fully qualified class name of an Action component.

Form

Form c
ersisp

 55

Case Study

handled

he Java Server Pages specification to provide a full-featured, robust
amework for assembling presentation pages from component parts. Each part (“Tile”)

 as often as needed throughout the application, which reduces the amount of
ark-up that needs to be maintained and makes it easier to change the look and feel of the

iew Helper components encapsulate access to the business logic and data that is accessed

elper has not been implemented as such, however a number of custom
gs and utility classes have been developed to support the storage and retrieval of

ata Validation components are responsible for simple field-level validation of user input

 is handled
ccordingly within the lower layers.

alidation of any input data is achieved via the use of ActionForm beans, though any

avigation

he Navigation package provides the logic to determine the most appropriate view to be

ction

underlying
usiness logic.

ithin Struts, this is achieved using Action classes that invoke specific business processes

ave somewhere to store transient information such as the state of the user session.

Within Struts, the Form components are implemented as ActionForm beans.

View

View components are responsible for rendering the particular user interface layout,
acquiring data from the user and translating any user actions into events that can be
by the Controller.

Within Struts, the View components are implemented as Java Server Pages (JPSs).
In addition to using the Struts framework, the Tiles framework (bundled as a set of
extensions to the Struts code) is also used. The Tiles build on the “include” feature
provided by t
fr
can be re-used
m
application.

View Helper

V
and/or manipulated by the views. This facilitates component reuse and allows multiple
views to leverage a common ‘helper’ to retrieve and adapt similar business data for
presentation in multiple ways.

A discrete View H
ta
‘customer’ data from the HTTP session object.

Data Validation

D
data, for example type checking and cross-validation of mandatory fields. These
components are not responsible for any business related validation, which
a

V
common validation logic is grouped within the Data Validation package.

N

T
displayed to the user.

A

Action components act as a facade between the presentation layer and the
b

W
via the use of Web Service requests through the Business Process Proxy.

Presentation Data

Presentation Data components are responsible for maintaining any state that facilitates the
successful operation of the presentation layer logic. For example, the Controller and View
Manager must have some way of knowing where the user is within a process, as well as
h

56

Web Security
and Case Study approach is both mature and proven and conforms to

ne of the standard session handling techniques as detailed within the J2EE specification.

ession tracking is achieved via the use of non-persistent HTTP cookies, which is a mature,

usiness Process Proxy

The Business Process Gateway itself will be implemented as a command design pattern

 be remotely located from the
.

Specifically, user session state is maintained within the HTTP session object provided by
the appropriate J2EE container. This
o

S
standard for J2EE session tracking.

B

Business Process Proxy components should act as a local representation of the Business
Process Gateway.

using an EJB and the Business Process Proxy as Java classes that encapsulate the lookup
and instantiation of the gateway, such that the gateway can
proxy

3.4 BUSINESS PROCESS LAYER

Figure 3 identifies the significant software components and indicates how these map to the
high-level software packages that are described within the bank’s Software Layering
Model.

Business Process Layer

« Java »
Business Process

Logic

RMI-IIOP

« EJB »
Business Process

Gateway

Java

Java

ce.

eway will be implemented as a command design pattern, using a
execute’ method. The EJB utilises a configuration file that maps

usiness Process Logic components will implement the flow of work associated with
requests for business logic execution, which could be anything from a simple single task to

Figure 3: Business process layer software context diagram

Business Process Gateway

Business Process Gateway components will act as a wrapper to the underlying business
process logic and translate simple requests into appropriate calls to execute specific
business logic. The ‘gateway’ ensures that a generic interface is offered to clients and
insulates clients from the complexities of the specific Business Process Logic interfa

The Business Process Gat
ingle EJB with a single ‘s

each specific request to the appropriate business process logic class and method for
execution.

Business Process Logic

B

 57

Case Study ibly

here is no requirement to manage process or activity state across multiple tasks

ary of the activity.

k) being handled by the
presentation layer and the task only being invoked once all the required input data is

ed

3.5 ENTERPRISE APPLICATION INTEGRATION

a complex combination of activities and tasks invoked over long periods and poss
involving many different resources.

T
(workflow). N.B. An example, exception to this is, the ‘logon’ activity that invokes
multiple tasks, albeit without the need to manage state beyond the bound

The Business Process Logic components will be implemented as Java classes that will
inherit from the AbstractBusinessProcess class and will implement the
BusinessProcessGatewayInterface. The classes will map directly to the modelled use
cases, with any user interaction (to capture input data for a tas

present. There is then no further interaction with the task until the resulting data is return
to the presentation layer once the task has been completed.

LAYER

Figure 4 identifies the significant of software components and indicates how these map

Lay

to the high-level software packages that are described within the bank’s Software
ering Model.

EAI Layer

« Java »
Enterprise Application

Adapter

Java

Java

« Java »
Business Function

Facade

Java

« Java »
Enterprise Application

Transformation
Java

Figure 4: EAI layer software context diagram

usiness Function Façade components will provide a unified interface to the set of business
us

,

ava
external

format of the message and the expected return types.
his implementation, though quite complex, is highly configurable and ensures a weak

coupling between the business process layer and the underlying applications.

Business Function Façade

B
function interfaces that will be implemented in the underlying enterprise applications, th
enforcing a weak coupling between the façade’s clients and the underlying applications.

The façade will be implemented as a single generic interface in the form of a Java class
(Busi) with a single ‘send’ method that accepts three parameters, namely the relevant data
the associated context and a string that identifies the particular function to be invoked. J
reflection and configuration files will be then used to determine the particular
resource to communicate with, the
T

58

Web Security
and Case Study

that implement

e requested functions. This decouples the Business Function Façade from the physical

ession
JBs, with a combination of XML configuration files, JNDI, and Java reflection being used

municate with.

•

 with a local ‘test harness’ that mimics the
mainframe-based retail banking system when it is not available

er where applicable. Typically such transformations will occur between
e EAI layer’s native format (Java) and the format supported by the particular underlying

com le

Temp

nframe-based retail banking system and other external resources.

 field to

E
cu

Enterprise Application Adapter

Enterprise Application Adapter components will provide transport mechanisms to forward
requests for business function onto the underlying enterprise applications
th
implementation of the Business Function, which may be local or remote.

The Enterprise Application Adapter components will be implemented as stateless s
E
to determine and instantiate the particular external resource to com

Four specific ‘adapters’ should have been implemented, namely:

• HostAdapter to communicate with the mainframe-based retail banking system via the
Java Message Service (JMS)
DatabaseAdapter to communicate with the mid-tier DB2 system to via JDBC

• JavaMailAdapter to communicate with Message Transfer Agents (MTAs) that
pport the Simple Message Transfer Protocol (SMTP), via the JavaMail interface su

• DummyHostAdapter to communicate

Enterprise Application Transformation

Enterprise Application Transformation components will be responsible for transforming
messages from one format to another, including translating objects from one development
language to anoth
th
enterprise application. These transformations are usually bi-directional, occurring once in
either direction.

A prehensive transformation mechanism has been implemented, based on configurab
lates, to support the following:

• Transforming the requests for business function into the specific message formats
expected by the mai

• Transforming specific field types from one format to another, e.g. a Java date

a Cobol date field.

• ncoding and decoding sensitive data before and after transmission, e.g. the
stomer PIN and SPI data.

3.6 HIGH LEVEL FUNCTIONAL ARCHITECTURE

The Solution’s functional architecture (see Figure 5) has been defined to provide a
otential set of groupings that could be of benefit in the future, because p much of the

as

grouping and then uses it to group the
specific business process tasks and business function operations implemented to show how
we would have been able to start structuring meaningful business units of work to
understand and change the systems base easily.

business function processing is already implemented within the Bank’s mainframe that, h
been re-used with limited changes. As a result this iteration of the project has not created
namespaces to reflect this potential set of groupings.

owever, the following section does identify this H

 59

Customer Branch Staff Call Centre Staff

<<Presentation Layer Package >>
Customer Internet Screens

<<Presentation Layer Package>>
Call Centre Screens

<<Presentation Layer Package >>
Branch Screens

<<Business Process Layer Package>>
Customer Authentication Tasks

<<Business Process Layer Package>>
Customer Bank Account Servicing Tasks

<<Business Function Layer Package>>
Customer Information Processing

<<Business Function Layer Package>>
Bank Account Processing

<<Business Function Layer Package>>
Customer Contact Processing

<<Business Process Layer Package>>
Customer Contact Servicing Tasks

Presentation Layer

Business Process Layer

Business Function Façade & Business Function Layers

Case Study

Figure 5:The Solution’s Functional Architecture diagram

3.7 PRESENTATION LAYER PACKAGES

The solution was originally focused on delivering screens that could support multiple
channels and multiple users. This genericity was quickly relaxed for the different classes of
users (customer, branch and call centre) because of the potential benefits of interface
optimisation. But the intention remains to re-use as much as possible across each of these
user groups.

Within the customer Internet screens package there is additional variation that has been
introduced by the need to provide different look and feel for branch and internet banking.
This iteration has therefore, focused on the customer Internet screens package and its initial
support for internet banking processing.

The presentation layer is logically partitioned into three separate packages of screens:

Customer Internet Screens Package

This package provides the screen interfaces needed for customer Internet access to the
Bank Account and Customer Contact Servicing business process.

Branch Screens

This package will provide the screen interfaces needed for branch staff access to the Bank
Account and Customer Contact Servicing business process.

60

Web Security
and Case Study

Call Centre Screens

This package will provide the screen interfaces needed for call centre staff access to the
Bank Account and Customer Contact Servicing business process. The call centre package
may be addressed within the project or a separate Call Centre Integration project depending
on their development over the coming months and years. A small part of this package has
been addressed within this iteration of the project that has delivered the Operator
Application for managing secure e-mails.

3.8 BUSINESS PROCESS LAYER PACKAGES

A major objective of the project is to begin to share business processes across different
interaction channels and communities of users, where appropriate. The business processes
have been implemented as single shot tasks with no processing provided for the creation
and state maintenance of long running processes as there was no requirement to manage
process or activity state across multiple tasks. Future extension of the definition and
management of these processes may require a more expansive approach to process
definition and management to be developed.

The set of tasks undertaken, within each business process layer package, are described
below. Within this iteration the business process tasks were designed to replicate much of
the existing functionality (available using the old technology) rather than to add new
capabilities. The business process layer is logically partitioned into three separate packages
of business process tasks:

Customer Authentication Tasks

The customer authentication task package implements the following tasks:
• Customer Logon and View Accounts
• View Accounts and Secure Messages Customer Logon,
• ustomer Logoff C

ustomer Bank Account Servicing Tasks C

mplements the following tasks: The customer bank account servicing task package i

• Customer Bank Account Servicing Requests

ts
• anage Standing Orders

The customer contact servicing task package implements the following tasks:
M

• Manage Bill Payments
• Manage Funds Transfer
• Manage Customer R

eques
M

• Manage Statements

Customer Contact Servicing Tasks

• anage Secure Messages

3.9 BUSINESS FUNCTION LAYER PACKAGES

Within the project, the aim was to reuse business function processing on the mainframe
providing façade processing (to access the mainframe processing) in the middle tier and
adding new business functions in the middle tier for processing. Within this section, the
business function operations packages represent both the business function façades and the

 61

Case Study he business function layer is logically partitioned into
ree separate packages of business function operations:

formation Processing

ocessing package implements the following business function
perations:

ing

age implements the following business function

iry
ing

• ill Payments Enquiry

• S
• tanding Order Processing

 SOLUTION USABILITY RELATED

business function implementations. T
th

Customer In

The customer information-pr
o
• Customer Enquiry
• Customer Processing

Bank Account Process

The bank account processing pack
operations:
• Account Enquiry
• Account Processing
• Customer Request Enqu
• Customer Request Process
• Funds Transfer Enquiry
• Funds Transfer Processing

B
• Bill Payments Processing
• Statement Service

tanding Order Enquiry
S

3.10 SPECIFIC
ELEMENTS

The main elements of the solution that support usability are the following:

elements described above were developed in response to the specific
ehavioural and performance needs identified by the use cases that described the user

e

d his/her way around the system with little or no assistance. Help screens are
rovided to assist the users.

• screen designs,
• task dialogue design,
• responsiveness and controls built into the mainframe implementation of business

function, and
• conformance to the DDA.

The first three
b
interaction with the system. Each use case involves the interaction with a system interfac
(such as a screen), the invocation of a business task and the execution of a business
function. The solution has been designed to enable each use case to provide usable
interaction for the solution users.

Learnability

The solution needs to be easy to learn such that an external user can effectively use the
different channels available when they first use the system. The solution should be
designed to be easy to learn. It is intuitive to the degree that someone using it for the first
time can fin
p

62

Web Security
and Case Study

ng

w of

improvements in

uld be designed to minimise the time and effort needed to
arry out the tasks enabled by the system. This was somewhat compromised by the

r,

Likeability

The different Bank channels of interaction with customers pride themselves on enhanci
the customer’s view of the Bank and its commitment to people and ethics. The solution
would have to be designed to be “attractive” to customers and promote a positive vie
the Bank.

Productivity

Customer and staff time is important and the solution needs to assist
productivity. The solution sho
c
decision to move all screen processing to the server to meet other requirements. Howeve
the creation of an effective user interface was managed by early prototyping with the
system users to agree on the best solution for the interface requirements.

3.11 SUMMARY

The solution is prescribed along modular lines. It provides both vertical and horizontal
scalability. The software should be developed as components with clear responsibilities
servicing each of the application architecture layers. The components and objects within
these layers are carefully designed following the principles of loose coupling, cohesion and
clear management of pre and post conditions.

Components managing the interfaces between each application architecture layer should
provide clearly defined APIs to enable the flexible combination of functionality offered by
each layer, and localisation of the impact of change to those components. This provides the
basis for managed extendibility of the solution.

	UNIT 1 WEB SECURITY CONCEPTS
	
	Structure Page Nos.
	Web services and its advantages
	
	A Common Windows Security Problem
	
	Solving the Problem
	(Check Your Progress 1
	
	In this section, we will describe briefly four concepts related to web security.
	Message Forgery
	In cryptography, message forgery is the sending of a message to deceive the recipient of whom the real sender is. A common example is sending a spam e-mail from an address belonging to someone else
	SSL working

